Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1981 Sep;68(3):585–587. doi: 10.1104/pp.68.3.585

Lipid Composition of Chloroplast Membranes from Weed Biotypes Differentially Sensitive to Triazine Herbicides

Parthasarathy Pillai 1, Judith B St John 1
PMCID: PMC425943  PMID: 16661961

Abstract

Chloroplasts were isolated from triazine-sensitive and triazine-resistant biotypes of common groundsel (Senecio vulgaris L.), common lambsquarter (Chenopodium album L.), and redroot pigweed (Amaranthus retroflexus L.). Chloroplast lipids were extracted and analyzed for differences among sensitive and resistant biotypes. The distribution of lipid between major lipid classes differed in chloroplasts from resistant and susceptible biotypes. Chloroplasts from resistant biotypes contained higher proportions of monogalactosyl diglyceride and phosphatidyl ethanolamine and lower proportions of digalactosyl diglyceride and phosphatidyl choline than did chloroplasts from susceptible biotypes. Monogalactosyl diglyceride and phosphatidyl ethanolamine were also quantitatively higher in membranes of resistant versus susceptible biotypes. The major lipid classes of resistant chloroplast membranes contained lipids comparatively richer in unsaturated fatty acids with the exceptions of digalactosyl diglyceride from all three biotypes and phosphatidyl ethanolamine from common groundsel. Results correlated changes in triazine sensitivity with qualitative and quantitative differences in the lipid composition of chloroplast membranes.

Full text

PDF
585

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arntzen C. J., Ditto C. L., Brewer P. E. Chloroplast membrane alterations in triazine-resistant Amaranthus retroflexus biotypes. Proc Natl Acad Sci U S A. 1979 Jan;76(1):278–282. doi: 10.1073/pnas.76.1.278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  4. John J. B., Christiansen M. N. Inhibition of linolenic Acid synthesis and modification of chilling resistance in cotton seedlings. Plant Physiol. 1976 Feb;57(2):257–259. doi: 10.1104/pp.57.2.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Nakatani H. Y., Barber J. An improved method for isolating chloroplasts retaining their outer membranes. Biochim Biophys Acta. 1977 Sep 14;461(3):500–512. [PubMed] [Google Scholar]
  6. Pfister K., Radosevich S. R., Arntzen C. J. Modification of Herbicide Binding to Photosystem II in Two Biotypes of Senecio vulgaris L. Plant Physiol. 1979 Dec;64(6):995–999. doi: 10.1104/pp.64.6.995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Zadunaisky J. A., Schaeffer B. E., Cherksey B. Chloride active transport, membrane lipids and receptors in the corneal epithelium. Ann N Y Acad Sci. 1980;341:233–245. doi: 10.1111/j.1749-6632.1980.tb47175.x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES