Abstract
Reactions of the uptake hydrogenase from Anabaena 7120 (A.T.C.C. 27893, Nostoc muscorum) were examined in whole filaments, isolated heterocysts, and membrane particles. Whole filaments or isolated heterocysts that contained nitrogenase consumed H2 in the presence of C2H2 or N2 in a light-dependent reaction. If nitrogenase was inactivated by O2 shock, filaments catalyzed H2 uptake to an unidentified endogenous acceptor in the light. Addition of NO3− or NO2− enhanced these rates. Isolated heterocysts consumed H2 in the dark in the presence of electron acceptors with positive midpoint potentials, and these reactions were not enhanced by light. With acceptors of negative midpoint potential, significant light enhancement of H2 uptake occurred. Maximum rates of light-dependent uptake were approximately 25% of the maximum dark rates observed. Membrane particles prepared from isolated heterocysts showed similar specificity for electron acceptors. These particles catalyzed a cyanide-sensitive oxyhydrogen reaction that was inactivated by O2 at O2 concentrations above 2%. Light-dependent H2 uptake to low potential acceptors by these particles was inhibited by dibromothymoquinone but was insensitive to cyanide. In the presence of O2, light-dependent H2 uptake occurred simultaneously with the oxyhydrogen reaction. The pH optima for both types of H2 uptake were near 7.0. These results further clarify the role of uptake hydrogenase in donating electrons to both the photosynthetic and respiratory electron transport chains of Anabaena.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bothe H., Distler E., Eisbrenner G. Hydrogen metabolism in blue-green algae. Biochimie. 1978;60(3):277–289. doi: 10.1016/s0300-9084(78)80824-4. [DOI] [PubMed] [Google Scholar]
- Bothe H., Tennigkeit J., Eisbrenner G. The utilization of molecular hydrogen by the blue-green alga Anabaena cylindrica. Arch Microbiol. 1977 Jul 26;114(1):43–49. doi: 10.1007/BF00429628. [DOI] [PubMed] [Google Scholar]
- Dixon R. O. Hydrogenase in legume root nodule bacteroids: occurrence and properties. Arch Mikrobiol. 1972;85(3):193–201. doi: 10.1007/BF00408844. [DOI] [PubMed] [Google Scholar]
- Dixon R. O. Hydrogenase in pea root nodule bacterioids. Arch Mikrobiol. 1968;62(3):272–283. doi: 10.1007/BF00413898. [DOI] [PubMed] [Google Scholar]
- Emerich D. W., Ruiz-Argüeso T., Ching T. M., Evans H. J. Hydrogen-dependent nitrogenase activity and ATP formation in Rhizobium japonicum bacteroids. J Bacteriol. 1979 Jan;137(1):153–160. doi: 10.1128/jb.137.1.153-160.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HYNDMAN L. A., BURRIS R. H., WILSON P. W. Properties of hydrogenase from Azotobacter vinelandii. J Bacteriol. 1953 May;65(5):522–531. doi: 10.1128/jb.65.5.522-531.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hildreth W. W. Laser-activated electron transport in a Chlamydomonas mutant. Plant Physiol. 1968 Mar;43(3):303–312. doi: 10.1104/pp.43.3.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Houchins J. P., Burris R. H. Occurrence and localization of two distinct hydrogenases in the heterocystous cyanobacterium Anabaena sp. strain 7120. J Bacteriol. 1981 Apr;146(1):209–214. doi: 10.1128/jb.146.1.209-214.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ikuma H., Bonner W. D. Properties of Higher Plant Mitochondria. III. Effects of Respiratory Inhibitors. Plant Physiol. 1967 Nov;42(11):1535–1544. doi: 10.1104/pp.42.11.1535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones L. W., Bishop N. I. Simultaneous measurement of oxygen and hydrogen exchange from the blue-green alga anabaena. Plant Physiol. 1976 Apr;57(4):659–665. doi: 10.1104/pp.57.4.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laasch N., Kaiser W., Urbach W. Effects of disalicylidenepropanediamines on photosynthetic electron transport of isolated spinach chloroplasts. Plant Physiol. 1979 Apr;63(4):605–608. doi: 10.1104/pp.63.4.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manzano C., Candau P., Gomez-Moreno C., Relimpio A. M., Losada M. Ferredoxin-dependent photosynthetic reduction of nitrate and nitrite by particles of Anacystis nidulans. Mol Cell Biochem. 1976 Feb 25;10(3):161–169. doi: 10.1007/BF01731687. [DOI] [PubMed] [Google Scholar]
- Peschek G. A. Aerobic hydrogenase activity in Anacystis nidulans. The oxyhydrogen reaction. Biochim Biophys Acta. 1979 Nov 8;548(2):203–215. doi: 10.1016/0005-2728(79)90129-4. [DOI] [PubMed] [Google Scholar]
- Peschek G. A. Anaerobic hydrogenase activity in Anacystis nidulans. H2-dependent photoreduction and related reactions. Biochim Biophys Acta. 1979 Nov 8;548(2):187–202. doi: 10.1016/0005-2728(79)90128-2. [DOI] [PubMed] [Google Scholar]
- Peterson R. B., Wolk C. P. High recovery of nitrogenase activity and of Fe-labeled nitrogenase in heterocysts isolated from Anabaena variabilis. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6271–6275. doi: 10.1073/pnas.75.12.6271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peterson R. B., Wolk C. P. Localization of an uptake hydrogenase in anabaena. Plant Physiol. 1978 Apr;61(4):688–691. doi: 10.1104/pp.61.4.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slater E. C. The mechanism of action of the respiratory inhibitor, antimycin. Biochim Biophys Acta. 1973 Dec 7;301(2):129–154. doi: 10.1016/0304-4173(73)90002-5. [DOI] [PubMed] [Google Scholar]
- Slovacek R. E., Hind G. Influence of antimycin a and uncouplers on anaerobic photosynthesis in isolated chloroplasts. Plant Physiol. 1977 Oct;60(4):538–542. doi: 10.1104/pp.60.4.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tel-Or E., Luijk L. W., Packer L. Hydrogenase in N2-fixing cyanobacteria. Arch Biochem Biophys. 1978 Jan 15;185(1):185–194. doi: 10.1016/0003-9861(78)90158-3. [DOI] [PubMed] [Google Scholar]
- Tetley R. M., Bishop N. I. The differential action of metronidazole on nitrogen fixation, hydrogen metabolism, photosynthesis and respiration in Anabaena and Scenedesmus. Biochim Biophys Acta. 1979 Apr 11;546(1):43–53. doi: 10.1016/0005-2728(79)90168-3. [DOI] [PubMed] [Google Scholar]
- Wolk C. P. Movement of carbon from vegetative cells to heterocysts in Anabaena cylindrica. J Bacteriol. 1968 Dec;96(6):2138–2143. doi: 10.1128/jb.96.6.2138-2143.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de la Roche A. I. Increase in linolenic Acid is not a prerequisite for development of freezing tolerance in wheat. Plant Physiol. 1979 Jan;63(1):5–8. doi: 10.1104/pp.63.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
