Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1981 Sep;68(3):722–726. doi: 10.1104/pp.68.3.722

Ontogenetic Variation of Nitrogenase, Nitrate Reductase, and Glutamine Synthetase Activities in Oryza sativa1

Peter van Berkum 1,2,2, Charles Sloger 1,2
PMCID: PMC425969  PMID: 16661987

Abstract

The relationship between the rates of nitrogenase, nitrate reductase, and glutamine synthetase activities, and plant ontogeny in rice (Oryza sativa L.), cultivar `M9', grown in salt marsh sediment with and without nitrate treatment was studied. In both treatments, nitrogenase activity measured as the immediate linear rate of acetylene reduction by bacteria associated with the roots varied with plant age. In control plants, the nitrogenase activity developed during the vegetative stage, peaked during early reproductive growth and then declined. The application of 10 kilograms N per hectare as KNO3 once every 2 weeks delayed the development of and decreased the nitrogenase activity. The nitrogenase activity in both treatments developed as leaf nitrate reductase activity declined. The per cent nitrogen of roots was negatively correlated with the rates of acetylene reduction during the life cycles of control and nitrate-treated plants. This suggests that the concentration of combined nitrogen in the plants controlled the development and rate of root-associated nitrogenase activity. During reproductive growth, no nitrate reductase activity was detected in the roots from either treatment. In control plants, the patterns of nitrogenase activity and glutamine synthetase activity in the roots were similar. Thus, rice roots have the potential to assimilate ammonia while fixing N2. During the vegetative and early reproductive stages of growth, the development of maximal rates of nitrogenase activity coincided with an increase of total nitrogen of the plants in both treatments.

Full text

PDF
722

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Hageman R. H., Flesher D. Nitrate Reductase Activity in Corn Seedlings as Affected by Light and Nitrate Content of Nutrient Media. Plant Physiol. 1960 Sep;35(5):700–708. doi: 10.1104/pp.35.5.700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hardy R. W., Holsten R. D., Jackson E. K., Burns R. C. The acetylene-ethylene assay for n(2) fixation: laboratory and field evaluation. Plant Physiol. 1968 Aug;43(8):1185–1207. doi: 10.1104/pp.43.8.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ito O., Cabrera D., Watanabe I. Fixation of dinitrogen-15 associated with rice plants. Appl Environ Microbiol. 1980 Mar;39(3):554–558. doi: 10.1128/aem.39.3.554-558.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Klepper L., Flesher D., Hageman R. H. Generation of reduced nicotinamide adenine dinucleotide for nitrate reduction in green leaves. Plant Physiol. 1971 Nov;48(5):580–590. doi: 10.1104/pp.48.5.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. Von Bülow J. F., Döbereiner J. Potential for nitrogen fixation in maize genotypes in Brazil. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2389–2393. doi: 10.1073/pnas.72.6.2389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. van Berkum P., Bohlool B. B. Evaluation of nitrogen fixation by bacteria in association with roots of tropical grasses. Microbiol Rev. 1980 Sep;44(3):491–517. doi: 10.1128/mr.44.3.491-517.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. van Berkum P., Sloger C. Comparing time course profiles of immediate acetylene reduction by grasses and legumes. Appl Environ Microbiol. 1981 Jan;41(1):184–189. doi: 10.1128/aem.41.1.184-189.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. van Berkum P., Sloger C. Immediate acetylene reduction by excised grass roots not previously preincubated at low oxygen tensions. Plant Physiol. 1979 Nov;64(5):739–743. doi: 10.1104/pp.64.5.739. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES