Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1981 Oct;68(4):941–943. doi: 10.1104/pp.68.4.941

Effects of Hydroxamic Acids Isolated from Gramineae on Adenosine 5′-triphosphate Synthesis in Chloroplasts 1

Carlos B Queirolo 1,2, Carlos S Andreo 1,2, Rubén H Vallejos 1,2, Hermann M Niemeyer 1,2, Luis J Corcuera 1,2
PMCID: PMC426017  PMID: 16662030

Abstract

Two hydroxamic acids isolated from maize extracts, 2,4-dihydroxy-7-methoxy-1,4-(2H)-benzoxazin-3(4H)-one (DIMBOA) and the 2-O-β-d-glucopyranoside of DIMBOA, inhibit photophosphorylation by spinach chloroplasts. Both cyclic and noncyclic photophosphorylations were inhibited to the same extent. The concentrations producing 50% inhibition for DIMBOA and its glucoside were about 1 and 4 millimolar, respectively. These compounds inhibit coupled electron transport but do not affect basal or uncoupled electron transport. Both acids inhibit the ATPase activities of membrane-bound coupling factor 1 (CF1) and of purified CF1. On the basis of these results, it is concluded that DIMBOA and its glucoside act as energy transfer inhibitors of photophosphorylation.

Full text

PDF
941

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreo C. S. Inhibition of energy-transducing functions of chloroplasts by spegazzinine. Arch Biochem Biophys. 1978 Mar;186(2):416–421. doi: 10.1016/0003-9861(78)90454-x. [DOI] [PubMed] [Google Scholar]
  2. Farron F., Racker E. Studies on the mechanism of the conversion of coupling factor 1 from chloroplasts to an active adenosine triphosphatase. Biochemistry. 1970 Sep 15;9(19):3829–3836. doi: 10.1021/bi00821a024. [DOI] [PubMed] [Google Scholar]
  3. Gould J. M. Inhibition by triphenyltin chloride of a tightly-bound membrane component involved in photophosphorylation. Eur J Biochem. 1976 Mar 1;62(3):567–575. doi: 10.1111/j.1432-1033.1976.tb10191.x. [DOI] [PubMed] [Google Scholar]
  4. Hofman J., Hofmanová O. 1,4-benzoxazine derivatives in plants. Sephadex fractionation and identification of a new glucoside. Eur J Biochem. 1969 Mar;8(1):109–112. doi: 10.1111/j.1432-1033.1969.tb00502.x. [DOI] [PubMed] [Google Scholar]
  5. LARDY H. A., CONNELLY J. L., JOHNSON D. ANTIBIOTIC STUDIES. II. INHIBITION OF PHOSPHORYL TRANSFER IN MITOCHONDRIA BY OLIGOMYCIN AND AUROVERTIN. Biochemistry. 1964 Dec;3:1961–1968. doi: 10.1021/bi00900a030. [DOI] [PubMed] [Google Scholar]
  6. Lucero H. A., Ravizzine R. A., Vallejos R. H. Inhibition of spinach chloroplasts photophosphorylation by the antibiotics leucinostatin and efrapeptin. FEBS Lett. 1976 Sep 15;68(1):141–144. doi: 10.1016/0014-5793(76)80423-1. [DOI] [PubMed] [Google Scholar]
  7. McCarty R. E., Guillory R. J., Racker E. Dio-9, an inhibitor of coupled electron transport and phosphorylation in chloroplasts. J Biol Chem. 1965 Dec;240(12):4822–4823. [PubMed] [Google Scholar]
  8. McCarty R. E., Pittman P. R., Tsuchiya Y. Light-dependent inhibition of photophosphorylation by N-ethylmaleimide. J Biol Chem. 1972 May 25;247(10):3048–3051. [PubMed] [Google Scholar]
  9. McCarty R. E., Racker E. Partial resolution of the enzymes catalyzing photophosphorylation. 3. Activation of adenosine triphosphatase and 32P-labeled orthophosphate -adeno-sine triphosphate exchange in chloroplasts. J Biol Chem. 1968 Jan 10;243(1):129–137. [PubMed] [Google Scholar]
  10. Nelson N. Structure and function of chloroplast ATPase. Biochim Biophys Acta. 1976 Nov 30;456(3-4):314–338. doi: 10.1016/0304-4173(76)90003-3. [DOI] [PubMed] [Google Scholar]
  11. Ravizzini R. A., Lescano W. I., Vallejos R. H. Effect of aurovertin on energy transfer reactions in Rhodospirillum rubrum chromatophores. FEBS Lett. 1975 Oct 15;58(1):285–288. doi: 10.1016/0014-5793(75)80280-8. [DOI] [PubMed] [Google Scholar]
  12. SUGINO Y., MIYOSHI Y. THE SPECIFIC PRECIPITATION OF ORTHOPHOSPHATE AND SOME BIOCHEMICAL APPLICATIONS. J Biol Chem. 1964 Jul;239:2360–2364. [PubMed] [Google Scholar]
  13. TAUSSKY H. H., SHORR E. A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem. 1953 Jun;202(2):675–685. [PubMed] [Google Scholar]
  14. Tipton C. L., Klun J. A., Husted R. R., Pierson M. D. Cyclic hydroxamic acids and related compounds from maize. Isolation and characterization. Biochemistry. 1967 Sep;6(9):2866–2870. doi: 10.1021/bi00861a030. [DOI] [PubMed] [Google Scholar]
  15. VAMBUTAS V. K., RACKER E. PARTIAL RESOLUTION OF THE ENZYMES CATALYZINE PHOTOPHOSPHORYLATION. I. STIMULATION OF PHOTOPHOSPHORYLATION BY A PREPARATION OF A LATENT, CA++- DEPENDENT ADENOSINE TRIPHOSPHATASE FROM CHLOROPLASTS. J Biol Chem. 1965 Jun;240:2660–2667. [PubMed] [Google Scholar]
  16. Willard J. I., Penner D. Benzoxazinones: cyclic hydroxamic acids found in plants. Residue Rev. 1976;64:67–76. doi: 10.1007/978-1-4684-7059-8_3. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES