Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1981 Nov;68(5):992–995. doi: 10.1104/pp.68.5.992

Biosynthesis of Malonate in Roots of Soybean Seedlings 1

David K Stumpf 1, R H Burris 1
PMCID: PMC426032  PMID: 16662078

Abstract

Many plants accumulate malonate, but it was shown earlier that malonate does not accumulate as a deadend product of metabolism in soybean (Glycine max v. Hodgson tissues. The metabolism of malonate in the soybean plant at the whole tissue and enzymic level was followed, and the pathway of malonate biosynthesis in young soybean root tissue was shown to be via acetyl-coenzyme A carboxylase.

Full text

PDF
992

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. HUFFAKER R. C., WALLACE A. Malonate synthesis via dark CO2 fixation in bush-bean roots. Biochim Biophys Acta. 1961 Jan 15;46:403–405. doi: 10.1016/0006-3002(61)90772-7. [DOI] [PubMed] [Google Scholar]
  2. Harley J. L., Beevers H. Acetate Utilization by Maize Roots. Plant Physiol. 1963 Jan;38(1):117–123. doi: 10.1104/pp.38.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hatch M. D., Stumpf P. K. Fat Metabolism in Higher Plants. XVII. Metabolism of Malonic Acid & Its alpha-Substituted Derivatives in Plants. Plant Physiol. 1962 Mar;37(2):121–126. doi: 10.1104/pp.37.2.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Lips S. H., Beevers H. Compartmentation of Organic Acids in Corn Roots II. The Cytoplasmic Pool of Malic Acid. Plant Physiol. 1966 Apr;41(4):713–717. doi: 10.1104/pp.41.4.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lips S. H., Beevers H. Compartmentation of organic acids in corn roots I. Differential labeling of 2 malate pools. Plant Physiol. 1966 Apr;41(4):709–712. doi: 10.1104/pp.41.4.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Shannon L. M., de Vellis J., Lew J. Y. Malonic Acid Biosynthesis in Bush Bean Roots. II. Purification and Properties of Enzyme Catalyzing Oxidative Decarboxylation of Oxaloacetate. Plant Physiol. 1963 Nov;38(6):691–697. doi: 10.1104/pp.38.6.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Stumpf D. K., Burris R. H. A micromethod for the purification and quantification of organic acids of the tricarboxylic acid cycle in plant tissues. Anal Biochem. 1979 May;95(1):311–315. doi: 10.1016/0003-2697(79)90221-5. [DOI] [PubMed] [Google Scholar]
  8. Stumpf D. K., Burris R. H. Organic Acid contents of soybean: age and source of nitrogen. Plant Physiol. 1981 Nov;68(5):989–991. doi: 10.1104/pp.68.5.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ting I. P., Dugger W. M., Jr Separation and detection of organic acids on silica gel. Anal Biochem. 1965 Sep;12(3):571–578. doi: 10.1016/0003-2697(65)90224-1. [DOI] [PubMed] [Google Scholar]
  10. de Vellis J., Shannon L. M., Lew J. Y. Malonic Acid Biosynthesis in Bush Bean Roots. I. Evidence for Oxaloacetate as Immediate Precursor. Plant Physiol. 1963 Nov;38(6):686–690. doi: 10.1104/pp.38.6.686. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES