Abstract
Photosynthetic carbon metabolism of isolated spinach mesophyll cells was characterized under conditions favoring photorespiratory (PR; 0.04% CO2 and 20% O2) and nonphotorespiratory (NPR; 0.2% CO2 and 2% O2) metabolism, as well as intermediate conditions. Comparisons were made between the metabolic effects of extracellularly supplied NH4+ and intracellular NH4+, produced primarily via PR metabolism. The metabolic effects of 14CO2 fixation under PR conditions were similar to perturbations of photosynthetic metabolism brought about by externally supplied NH4+; both increased labeling and intracellular concentrations of glutamine at the expense of glutamate and increased anaplerotic synthesis through α-ketoglutarate. The metabolic effects of added NH4+ during NPR fixation were greater than those during PR fixation, presumably due to lower initial NH4+ levels during NPR fixation. During PR fixation, addition of ammonia caused decreased pools and labeling of glutamate and serine and increased glycolate, glyoxylate, and glycine labeling. The glycolate pathway was thus affected by increased rates of carbon flow and decreased glutamate availability for glyoxylate transamination, resulting in increased usage of serine for transamination. Sucrose labeling decreased with NH4+ addition only during PR fixation, suggesting that higher photosynthetic rates under NPR conditions can accommodate the increased drain of carbon toward amino acid synthesis while maintaining sucrose synthesis.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jensen R. G., Bassham J. A. Photosynthesis by isolated chloroplasts. Proc Natl Acad Sci U S A. 1966 Oct;56(4):1095–1101. doi: 10.1073/pnas.56.4.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kanazawa T., Kirk M. R., Bassham J. A. Regulatory effects of ammonia on carbon metabolism in photosynthesizing Chlorella pyrenoidosa. Biochim Biophys Acta. 1970 Jun 30;205(3):401–408. doi: 10.1016/0005-2728(70)90106-4. [DOI] [PubMed] [Google Scholar]
- Larsen P. O., Cornwell K. L., Gee S. L., Bassham J. A. Amino Acid Synthesis in Photosynthesizing Spinach Cells : EFFECTS OF AMMONIA ON POOL SIZES AND RATES OF LABELING FROM CO(2). Plant Physiol. 1981 Aug;68(2):292–299. doi: 10.1104/pp.68.2.292. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'neal D., Joy K. W. Glutamine synthetase of pea leaves: divalent cation effects, substrate specificity, and other properties. Plant Physiol. 1974 Nov;54(5):773–779. doi: 10.1104/pp.54.5.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oliver D. J., Zelitch I. Increasing photosynthesis by inhibiting photorespiration with glyoxylate. Science. 1977 Jun 24;196(4297):1450–1451. doi: 10.1126/science.867040. [DOI] [PubMed] [Google Scholar]
- Oliver D. J., Zelitch I. Metabolic regulation of glycolate synthesis, photorespiration, and net photosynthesis in tobacco by L-glutamate. Plant Physiol. 1977 Apr;59(4):688–694. doi: 10.1104/pp.59.4.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paul J. S., Bassham J. A. Maintenance of High Photosynthetic Rates in Mesophyll Cells Isolated from Papaver somniferum. Plant Physiol. 1977 Nov;60(5):775–778. doi: 10.1104/pp.60.5.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Platt S. G. Ammonia regulation of carbon metabolism in photosynthesizing leaf discs. Plant Physiol. 1977 Nov;60(5):739–742. doi: 10.1104/pp.60.5.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Platt S. G., Anthon G. E. Ammonia accumulation and inhibition of photosynthesis in methionine sulfoximine treated spinach. Plant Physiol. 1981 Mar;67(3):509–513. doi: 10.1104/pp.67.3.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Platt S. G., Bassham J. A. Separation of 14 C-labeled glycolate pathway metabolites from higher plant photosynthate. J Chromatogr. 1977 Mar 21;133(2):396–401. doi: 10.1016/s0021-9673(00)83504-9. [DOI] [PubMed] [Google Scholar]
- Platt S. G., Plaut Z., Bassham J. A. Analysis of steady state photosynthesis in alfalfa leaves. Plant Physiol. 1976 Jan;57(1):69–73. doi: 10.1104/pp.57.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Platt S. G., Plaut Z., Bassham J. A. Steady-state photosynthesis in alfalfa leaflets: effects of carbon dioxide concentration. Plant Physiol. 1977 Aug;60(2):230–234. doi: 10.1104/pp.60.2.230. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snyder F. W. Effect of CO(2) Concentration on Glycine and Serine Formation during Photorespiration. Plant Physiol. 1974 Mar;53(3):514–515. doi: 10.1104/pp.53.3.514. [DOI] [PMC free article] [PubMed] [Google Scholar]