Abstract
Presence of specific auxin-binding sites in strawberry fruit (Fragaria ananassa Duch. cv. Ozark Beauty) membranes has been demonstrated. These 1-naphthaleneacetic acid (NAA)-binding sites in the 80,000g to 120,000g fraction of the strawberry fruit membrane were pronase sensitive with an estimated equilibrium dissociation constant for NAA of 1.1 × 10−6 molar. The minimum concentration of NAA required to stimulate strawberry fruit growth was at least one order of magnitude higher than the minimum concentration of NAA required to stimulate corn coleoptile elongation. This was consistent with the higher equilibrium dissociation constant (lower affinity) for auxin binding to strawberry fruit membranes than to corn coleoptiles. Twelve auxin analogs, ranging from very strong to weak auxins, were tested for abilities to stimulate in situ strawberry fruit growth and to bind (displace or compete with NAA) to strawberry fruit membranes. The observed positive correlation (r = 0.74) between the in vitro binding to the 80,000 to 120,000 membrane fraction and the in situ biological activity of these analogs indicated that the NAA-binding sites in strawberry fruit membranes may represent physiologically relevant auxin receptors.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chamness G. C., McGuire W. L. Scatchard plots: common errors in correction and interpretation. Steroids. 1975 Oct;26(4):538–542. doi: 10.1016/0039-128x(75)90073-2. [DOI] [PubMed] [Google Scholar]
- Narayanan K. R., Mudge K. W., Poovaiah B. W. In vitro auxin binding to cellular membranes of cucumber fruits. Plant Physiol. 1981 Apr;67(4):836–840. doi: 10.1104/pp.67.4.836. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nitsch J. P. Free Auxins and Free Tryptophane in the Strawberry. Plant Physiol. 1955 Jan;30(1):33–39. doi: 10.1104/pp.30.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poovaiah B. W., Leopold A. C. Effects of inorganic solutes on the binding of auxin. Plant Physiol. 1976 Dec;58(6):783–785. doi: 10.1104/pp.58.6.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ray P. M. Auxin-binding Sites of Maize Coleoptiles Are Localized on Membranes of the Endoplasmic Reticulum. Plant Physiol. 1977 Apr;59(4):594–599. doi: 10.1104/pp.59.4.594. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ray P. M., Dohrmann U. Characterization of naphthaleneacetic Acid binding to receptor sites on cellular membranes of maize coleoptile tissue. Plant Physiol. 1977 Mar;59(3):357–364. doi: 10.1104/pp.59.3.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ray P. M. Specificity of Auxin-binding Sites on Maize Coleoptile Membranes as Possible Receptor Sites for Auxin Action. Plant Physiol. 1977 Oct;60(4):585–591. doi: 10.1104/pp.60.4.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ryan R. J., Lee C. Y. The role of membrane bound receptors. Biol Reprod. 1976 Feb;14(1):16–29. doi: 10.1095/biolreprod14.1.16. [DOI] [PubMed] [Google Scholar]
- Wardrop A. J., Polya G. M. Co-purification of Pea and Bean Leaf Soluble Auxin-binding Proteins with Ribulose-1,5-Bisphosphate Carboxylase. Plant Physiol. 1980 Jul;66(1):105–111. doi: 10.1104/pp.66.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]