Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1981 Dec;68(6):1428–1432. doi: 10.1104/pp.68.6.1428

Ripening Behavior of Wild Tomato Species 1

Rebecca Grumet 1, Jon F Fobes 1, Robert C Herner 1
PMCID: PMC426116  PMID: 16662121

Abstract

Nine wild tomato species were surveyed for variability in ripening characteristics. External signs of ripening, age of fruit at ripening, and ethylene production patterns were compared. Ethylene production was monitored using an ethylene-free air stream system and gas chromatography. Based on these ripening characteristics, the fruits fell into three general categories: those that change color when they ripen, green-fruited species that abscise prior to ripening, and green-fruited species that ripen on the vine.

The fruits that change color, Lycopersicon esculentum var. cerasiforme, Lycopersicon pimpinellifolium and Lycopersicon cheesmanii, exhibited a peak of ethylene production similar to the cultivated tomato; there were differences, however, in the timing and magnitude of the ethylene production. Peak levels of ethylene production are correlated with age at maturity. For the two species that abscise prior to ripening, Lycopersicon chilense and Lycopersicon peruvianum, ability to produce ethylene varied with stage of maturity. The two species differed from each other in time of endogenous ethylene production relative to abscission, suggesting differences in the control mechanisms regulating their ripening. For two of the green-fruited species that ripen on the vine, Lycopersicon chmielewskii and Lycopersicon parviflorum, ethylene production was correlated to fruit softening. For Lycopersicon hirsutum and Solanum pennellii, however, ethylene production was not correlated with external ripening changes, making questionable the role of ethylene as the ripening hormone in these fruits.

Full text

PDF
1428

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abeles F. B., Craker L. E., Leather G. R. Abscission: the phytogerontological effects of ethylene. Plant Physiol. 1971 Jan;47(1):7–9. doi: 10.1104/pp.47.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. McGlasson W. B., Dostal H. C., Tigchelaar E. C. Comparison of Propylene-induced Responses of Immature Fruit of Normal and rin Mutant Tomatoes. Plant Physiol. 1975 Feb;55(2):218–222. doi: 10.1104/pp.55.2.218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. McMurchie E. J., McGlasson W. B., Eaks I. L. Treatment of fruit with propylene gives information about the biogenesis of ethylene. Nature. 1972 May 26;237(5352):235–236. doi: 10.1038/237235a0. [DOI] [PubMed] [Google Scholar]
  4. Paterson D. R. Deafness due to Occlusion of Eustachian Tubes by Scar-tissue. Proc R Soc Med. 1911;4(OTOL):109–111. doi: 10.1177/003591571100401034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Rick C. M. Potential genetic resources in tomato species: clues from observations in native habitats. Basic Life Sci. 1973;2:255–269. doi: 10.1007/978-1-4684-2880-3_17. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES