Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1982 Jan;69(1):103–106. doi: 10.1104/pp.69.1.103

Promotion by Gibberellic Acid of Polyamine Biosynthesis in Internodes of Light-Grown Dwarf Peas 1

Yao-Ren Dai 1,2, Ravindar Kaur-Sawhney 1, Arthur W Galston 1
PMCID: PMC426154  PMID: 16662137

Abstract

When gibberellic acid (GA3; 5-35 micrograms per milliliter) is sprayed on 9-day-old light-grown dwarf Progress pea (Pisum sativum) seedlings, it causes a marked increase in the activity of arginine decarboxylase (ADC; EC 4.1.1.9) in the fourth internodes. The titer of putrescine and spermidine, polyamines produced indirectly as a result of ADC action, also rises markedly, paralleling the effect of GA3 on internode growth. Ammonium (5-hydroxycarvacryl) trimethyl chloride piperidine carboxylate (AMO-1618; 100-200 micrograms per milliliter) causes changes in the reverse direction for enzyme activity, polyamine content, and growth. GA3 also reverses the red-light-induced inhibition of ADC activity in etiolated Alaska pea epicotyls; this is additional evidence for gibberellin-light interaction in the control of polyamine biosynthesis. The enzyme ornithine decarboxylase (ODC; EC 4.1.1.17), an alternate source of putrescine arising from arginine, is not increased by GA3 or by AMO-1618.

The results support the hypothesis that ADC and polyamine content are important regulators of plant growth.

Full text

PDF
103

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altman A., Kaur-Sawhney R., Galston A. W. Stabilization of Oat Leaf Protoplasts through Polyamine-mediated Inhibition of Senescence. Plant Physiol. 1977 Oct;60(4):570–574. doi: 10.1104/pp.60.4.570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson T. R., Schanberg S. M. Ornithine decarboxylase activity in developing rat brain. J Neurochem. 1972 Jun;19(6):1471–1481. doi: 10.1111/j.1471-4159.1972.tb05090.x. [DOI] [PubMed] [Google Scholar]
  3. Bachrach U. Cyclic AMP-mediated induction of ornithine decarboxylase of glioma and neuroblastoma cells. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3087–3091. doi: 10.1073/pnas.72.8.3087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blethen S. L., Boeker E. A., Snell E. E. Argenine decarboxylase from Escherichia coli. I. Purification and specificity for substrates and coenzyme. J Biol Chem. 1968 Apr 25;243(8):1671–1677. [PubMed] [Google Scholar]
  5. Canellakis Z. N., Theoharides T. C. Stimulation of ornithine decarboxylase synthesis and its control by polyamines in regenerating rat liver and cultured rat hepatoma cells. J Biol Chem. 1976 Jul 25;251(14):4436–4441. [PubMed] [Google Scholar]
  6. Dai Y. R., Galston A. W. Simultaneous Phytochrome-controlled Promotion and Inhibition of Arginine Decarboxylase Activity in Buds and Epicotyls of Etiolated Peas. Plant Physiol. 1981 Feb;67(2):266–269. doi: 10.1104/pp.67.2.266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. De Mello F. G., Bachrach U., Nirenberg M. Ornithine and glutamic acid decarboxylase activities in the developing chick retina. J Neurochem. 1976 Oct;27(4):847–851. doi: 10.1111/j.1471-4159.1976.tb05145.x. [DOI] [PubMed] [Google Scholar]
  8. Goren R., Galston A. W. Control by phytochrome of C-sucrose incorporation into buds of etiolated pea seedlings. Plant Physiol. 1966 Jun;41(6):1055–1064. doi: 10.1104/pp.41.6.1055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jones R. L., Lang A. Extractable and Diffusible Gibberellins From Light- and Dark-grown Pea Seedlings. Plant Physiol. 1968 Apr;43(4):629–634. doi: 10.1104/pp.43.4.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kende H., Lang A. Gibberellins and Light Inhibition of Stem Growth in Peas. Plant Physiol. 1964 May;39(3):435–440. doi: 10.1104/pp.39.3.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Lockhart J. A. REVERSAL OF THE LIGHT INHIBITION OF PEA STEM GROWTH BY THE GIBBERELLINS. Proc Natl Acad Sci U S A. 1956 Nov;42(11):841–848. doi: 10.1073/pnas.42.11.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lockhart J. A. Studies on the Mechanism of Stem Growth Inhibition by Visible Radiation. Plant Physiol. 1959 Jul;34(4):457–460. doi: 10.1104/pp.34.4.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Montague M. J., Armstrong T. A., Jaworski E. G. Polyamine Metabolism in Embryogenic Cells of Daucus carota: II. Changes in Arginine Decarboxylase Activity. Plant Physiol. 1979 Feb;63(2):341–345. doi: 10.1104/pp.63.2.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Phinney B. O. GROWTH RESPONSE OF SINGLE-GENE DWARF MUTANTS IN MAIZE TO GIBBERELLIC ACID. Proc Natl Acad Sci U S A. 1956 Apr;42(4):185–189. doi: 10.1073/pnas.42.4.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Williams-Ashman H. G., Coppoc G. L., Weber G. Imbalance in ornithine metabolism in hepatomas of different growth rates as expressed in formation of putrescine, spermidine, and spermine. Cancer Res. 1972 Sep;32(9):1924–1932. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES