Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1982 Jan;69(1):210–213. doi: 10.1104/pp.69.1.210

Interaction of Ferredoxin-NADP Oxidoreductase with the Thylakoid Membrane 1

Nestor Carrillo 1, Ruben H Vallejos 1
PMCID: PMC426175  PMID: 16662160

Abstract

The binding of ferredoxin-NADP reductase to spinach chloroplast membranes was studied by washing the membranes with different media. Release of the enzyme from the thylakoids was greater in 0.75 millimolar EDTA but was not complete inasmuch as 20% the activity remained membrane-bound after three washes.

A Scatchard plot of binding experiments suggests the presence of one type of binding site and a stoichiometry of 3 to 4 nanomoles of reductase per micromole of chlorophyll was calculated. Rebinding has a nonspecific requirement for cations. Their effectiveness increased with their valency. Rebinding of purified enzyme to depleted membranes resulted in a stimulation of its diaphorase activity.

It is suggested that binding of ferredoxin-NADP reductase to thylakoid membranes is dependent upon neutralization of negative charges.

Full text

PDF
210

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bahr J. T., Jensen R. G. Ribulose Diphosphate Carboxylase from Freshly Ruptured Spinach Chloroplasts Having an in Vivo Km[CO(2)]. Plant Physiol. 1974 Jan;53(1):39–44. doi: 10.1104/pp.53.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barber J., Mills J., Love A. Electrical diffuse layers and their influence on photosynthetic processes. FEBS Lett. 1977 Mar 1;74(2):174–181. doi: 10.1016/0014-5793(77)80841-7. [DOI] [PubMed] [Google Scholar]
  3. Berzborn R. 2. Uberlösliche und unlösliche Chloroplasten-Antigene. Nachweis der Ferredoxin-NADP-Reduktase in der Oberfläche des Chloroplasten-Lamellarsystes mit Hilfe spezifischer Antikörper. Z Naturforsch B. 1968 Aug;23(8):1096–1104. [PubMed] [Google Scholar]
  4. Böhme H. On the role of ferredoxin and ferredoxin-NADP+ reductase in cyclic electron transport of spinach chloroplasts. Eur J Biochem. 1977 Jan;72(2):283–289. doi: 10.1111/j.1432-1033.1977.tb11251.x. [DOI] [PubMed] [Google Scholar]
  5. Böhme H. Quantitative determination of ferredoxin, ferredoxin-NADP+ reductase and plastocyanin in spinach chloroplasts. Eur J Biochem. 1978 Feb 1;83(1):137–141. doi: 10.1111/j.1432-1033.1978.tb12077.x. [DOI] [PubMed] [Google Scholar]
  6. Carrillo N., Lucero H. A., Vallejos R. H. Effect of Light on Chemical Modification of Chloroplast Ferredoxin-NADP Reductase. Plant Physiol. 1980 Mar;65(3):495–498. doi: 10.1104/pp.65.3.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carrillo N., Lucero H. A., Vallejos R. H. Light modulation of chloroplast membrane-bound ferredoxin-NADP+ oxidoreductase. J Biol Chem. 1981 Feb 10;256(3):1058–1059. [PubMed] [Google Scholar]
  8. Davis D. J., San Pietro A. Evidence for the role of sulfhydryl groups in a pH-dependent transition of ferredoxin:NADP oxidoreductase. Arch Biochem Biophys. 1977 Dec;184(2):572–577. doi: 10.1016/0003-9861(77)90467-2. [DOI] [PubMed] [Google Scholar]
  9. Forti G. Studies on NADPH-cytochrome f reductase of chloroplasts. Brookhaven Symp Biol. 1966;19:195–201. [PubMed] [Google Scholar]
  10. Gozzer C., Zanetti G., Galliano M., Sacchi G. A., Minchiotti L., Curti B. Molecular heterogeneity of ferredoxin-NADP+ reductase from spinach leaves. Biochim Biophys Acta. 1977 Dec 8;485(2):278–290. doi: 10.1016/0005-2744(77)90164-4. [DOI] [PubMed] [Google Scholar]
  11. Jennings R. C., Garlaschi F. M., Gerola P. D., Forti G. Partition zone penetration by chymotrypsin, and the localization of the chloroplast flavoprotein and photosystem II. Biochim Biophys Acta. 1979 May 9;546(2):207–219. doi: 10.1016/0005-2728(79)90040-9. [DOI] [PubMed] [Google Scholar]
  12. SHIN M., ARNON D. I. ENZYMIC MECHANISMS OF PYRIDINE NUCLEOTIDE REDUCTION IN CHLOROPLASTS. J Biol Chem. 1965 Mar;240:1405–1411. [PubMed] [Google Scholar]
  13. SHIN M., TAGAWA K., ARNON D. I. CRYSTALLIZATION OF FERREDOXIN-TPN REDUCTASE AND ITS ROLE IN THE PHOTOSYNTHETIC APPARATUS OF CHLOROPLASTS. Biochem Z. 1963;338:84–96. [PubMed] [Google Scholar]
  14. Schneeman R., Krogmann D. W. Polycation interactions with spinach ferredoxin-nicotinamide adenine dinucleotide phosphate reductase. J Biol Chem. 1975 Jul 10;250(13):4965–4971. [PubMed] [Google Scholar]
  15. Sculley M. J., Duniec J. T., Thorne S. W., Chow W. S., Boardman N. K. The stacking of chloroplast thylakoids. Quantitative analysis of the balance of forces between thylakoid membranes of chloroplasts, and the role of divalent cations. Arch Biochem Biophys. 1980 Apr 15;201(1):339–346. doi: 10.1016/0003-9861(80)90519-6. [DOI] [PubMed] [Google Scholar]
  16. Süss K. H. Isolation and partial characterization of membrane-bound ferredoxin-NADP+-reductase from chloroplasts. FEBS Lett. 1979 May 15;101(2):305–310. doi: 10.1016/0014-5793(79)81031-5. [DOI] [PubMed] [Google Scholar]
  17. Telfer A., Barber J., Jagendorf A. T. Electrostatic control of chloroplast coupling factor binding to thylakoid membranes as indicated by cation effects of electron transport and reconstitution of photophosphorylation. Biochim Biophys Acta. 1980 Jul 8;591(2):331–345. doi: 10.1016/0005-2728(80)90164-4. [DOI] [PubMed] [Google Scholar]
  18. Zanetti G., Arosio P. Solubilization from spinach thylakoids of a higher molecular weight form of ferredoxin-NADP+ reductase. FEBS Lett. 1980 Mar 10;111(2):373–376. doi: 10.1016/0014-5793(80)80830-1. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES