Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1982 Feb;69(2):353–359. doi: 10.1104/pp.69.2.353

Restricted Nitrate Influx and Reduction in Corn Seedlings Exposed to Ammonium 1

Charles T MacKown 1,2, William A Jackson 1, Richard J Volk 1
PMCID: PMC426209  PMID: 16662208

Abstract

The effect of ambient ammonium (0.5 millimolar [14NH4]2SO4) added to a nutrient solution containing 1.0 millimolar K15NO3, 99 atom per cent 15N, upon [15N]nitrate assimilation and utilization of previously accumulated [14N]nitrate was investigated. Corn seedlings, 5-day-old dark-grown decapitated (experiment I) and 10-day-old light-grown intact (experiment II), which had previously been grown on K14NO3 nutrient solution, were used. In both experiments, the presence of ambient ammonium decreased [15N]nitrate influx (20% after 6 hours) without significantly affecting the efflux of previously accumulated [14N]nitrate. In experiment I, relative reduction of [15N]nitrate (reduction as a percentage of influx) was inhibited more than was [15N]nitrate influx. Nevertheless, in experiment I, where all reduction could be assigned to the root system, the absolute inhibition of reduction during the 12 hours (13 micromoles/root) was less than the absolute inhibition in influx (24 micromoles/root). The data suggest that the influence of ammonium on [15N]nitrate influx could not be totally accounted for by the decrease in the potential driving force which resulted from restricted reduction; an additional impact on the influx process is indicated. Reduction of [15N]nitrate in experiment II after 6 hours accounted for 30 and 18% of the tissue excess 15N in the control and ammonium treatments, respectively. Relative distribution of 15N between roots and exudate (experiment I), or between roots and shoots (experiment II) was not affected by ammonium. On the other hand, the accumulation of [15N]nitrate in roots, shoots, and xylem exudate was enhanced by ammonium treatment compared to the control, whereas the accumulation of reduced 15N was inhibited.

Full text

PDF
353

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson D. E. Regulation of enzyme function. Annu Rev Microbiol. 1969;23:47–68. doi: 10.1146/annurev.mi.23.100169.000403. [DOI] [PubMed] [Google Scholar]
  2. Dunn-Coleman N. S., Tomsett A. B., Garrett R. H. Nitrogen metabolite repression of nitrate reductase in Neurospora crassa: effect of the gln-1a locus. J Bacteriol. 1979 Aug;139(2):697–700. doi: 10.1128/jb.139.2.697-700.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Eaglesham A. R.J., Hewitt E. J. The regulation of nitrate reductase activity from spinach Spinacea oleracea L. leaves by thiol compounds in the presence of adenosine-5'-diphosphate. FEBS Lett. 1971 Sep 1;16(4):315–318. doi: 10.1016/0014-5793(71)80379-4. [DOI] [PubMed] [Google Scholar]
  4. Kirkby E. A., Armstrong M. J. Nitrate uptake by roots as regulated by nitrate assimilation in the shoot of castor oil plants. Plant Physiol. 1980 Feb;65(2):286–290. doi: 10.1104/pp.65.2.286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Mackown C. T., Volk R. J., Jackson W. A. Nitrate Accumulation, Assimilation, and Transport by Decapitated Corn Roots : EFFECTS OF PRIOR NITRATE NUTRITION. Plant Physiol. 1981 Jul;68(1):133–138. doi: 10.1104/pp.68.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Neyra C. A., Hageman R. H. Nitrate uptake and induction of nitrate reductase in excised corn roots. Plant Physiol. 1975 Nov;56(5):692–695. doi: 10.1104/pp.56.5.692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Oaks A., Aslam M., Boesel I. Ammonium and amino acids as regulators of nitrate reductase in corn roots. Plant Physiol. 1977 Mar;59(3):391–394. doi: 10.1104/pp.59.3.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ohmori M., Hattori A. Transient change in the ATP pool of Anabaena cylindrica associated with ammonia assimilation. Arch Microbiol. 1978 Apr 27;117(1):17–20. doi: 10.1007/BF00689345. [DOI] [PubMed] [Google Scholar]
  9. Premakumar R., Sorger G. J., Gooden D. Nitrogen metabolite repression of nitrate reductase in Neurospora crassa. J Bacteriol. 1979 Mar;137(3):1119–1126. doi: 10.1128/jb.137.3.1119-1126.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Radin J. W. Differential regulation of nitrate reductase induction in roots and shoots of cotton plants. Plant Physiol. 1975 Feb;55(2):178–182. doi: 10.1104/pp.55.2.178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rao K. P., Rains D. W. Nitrate absorption by barley: I. Kinetics and energetics. Plant Physiol. 1976 Jan;57(1):55–58. doi: 10.1104/pp.57.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Smith F. W., Thompson J. F. Regulation of nitrate reductase in excised barley roots. Plant Physiol. 1971 Aug;48(2):219–223. doi: 10.1104/pp.48.2.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Vickery H. B., Pucher G. W., Clark H. E. GLUTAMINE METABOLISM OF THE BEET. Plant Physiol. 1936 Apr;11(2):413–420. doi: 10.1104/pp.11.2.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Volk R. J., Pearson C. J., Jackson W. A. Reduction of plant tissue nitrate to nitric oxide for mass spectrometric 15N analysis. Anal Biochem. 1979 Aug;97(1):131–135. doi: 10.1016/0003-2697(79)90336-1. [DOI] [PubMed] [Google Scholar]
  15. Weissman G. S. Influence of ammonium and nitrate nutrition on enzymatic activity in soybean and sunflower. Plant Physiol. 1972 Feb;49(2):138–141. doi: 10.1104/pp.49.2.138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Weissman G. S. Influence of ammonium and nitrate nutrition on the pyridine and adenine nucleotides of soybean and sunflower. Plant Physiol. 1972 Feb;49(2):142–145. doi: 10.1104/pp.49.2.142. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES