Abstract
The partial pressure of CO2 inside leaves of several species was measured directly. Small gas exchange chambers were clamped above and below the same section of an amphistomatous leaf. A flowing gas stream through one chamber allowed normal CO2 and water vapor exchange. The other chamber was in a closed circuit consisting of the chamber, an infrared gas analyzer, and a peristaltic pump. The CO2 in the closed system rapidly reached a steady pressure which it is believed was identical to the CO2 pressure inside the leaf, because there was no flux of CO2 across the epidermis. This measured partial pressure was in close agreement with that estimated from a consideration of the fluxes of CO2 and vapor at the other surface.
Full text
PDF


Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Dubbe D. R., Farquhar G. D., Raschke K. Effect of abscisic Acid on the gain of the feedback loop involving carbon dioxide and stomata. Plant Physiol. 1978 Sep;62(3):413–417. doi: 10.1104/pp.62.3.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mawson B. T., Colman B., Cummins W. R. Abscisic Acid and photosynthesis in isolated leaf mesophyll cell. Plant Physiol. 1981 Feb;67(2):233–236. doi: 10.1104/pp.67.2.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharkey T. D., Raschke K. Effect of Light Quality on Stomatal Opening in Leaves of Xanthium strumarium L. Plant Physiol. 1981 Nov;68(5):1170–1174. doi: 10.1104/pp.68.5.1170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharkey T. D., Raschke K. Effects of phaseic Acid and dihydrophaseic Acid on stomata and the photosynthetic apparatus. Plant Physiol. 1980 Feb;65(2):291–297. doi: 10.1104/pp.65.2.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
