Abstract
The plant growth retardant α-cyclopropyl-α-(4-methyoxyphenyl)-5-pyrimidine methyl alcohol (ancymidol) and a series of analogs of this substance in which one or more of the substituents were varied were tested for their comparative biological activity. The compounds were tested as inhibitors of internode elongation in peas and as inhibitors of the oxidation of ent-kaurene catalyzed by microsomal preparations from the liquid endosperm of Marah macrocarpus seeds. The relative effectiveness of a substance was generally the same as an inhibitor of the two processes. Ancymidol was the most effective. Substitution of the alcohol group of ancymidol by either methoxy or hydrogen groups reduced the activity only slightly. Substitution of the cyclopropyl group by an isopropyl moiety also had little effect on the activity. However, substitution of the cyclopropyl group with a phenyl or other aryl substituent greatly reduced the effectiveness of the analog as an inhibitor. Replacement of the 4-methoxyphenyl substituent with a similar substituent such as 4-chlorophenyl had little effect on activity, but replacement with a 2-methoxyphenyl group greatly reduced activity. Analogs in which the pyrimidyl moiety of ancymidol was modified were inactive in whole plants, but moderately active in the cell-free ent-kaurene oxidation system. The application of gibberellic acid can overcome the growth inhibitions due to treatment of the test plants with 10−5m or lower concentrations of the inhibitors. However, the inhibitory effects of 10−4m or higher concentrations of inhibitors on test plants were not overcome by the applications of exogenous gibberellic acid. These results support the idea that the effects of low concentrations of these substances on plant growth are primarily a consequence of their ability to inhibit ent-kaurene oxidation and gibberellin biosynthesis. Other modes of inhibition may operate at higher inhibitor concentrations.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Coolbaugh R. C., Hamilton R. Inhibition of ent-Kaurene Oxidation and Growth by alpha-Cyclopropyl-alpha-(p-methoxyphenyl)-5-pyrimidine Methyl Alcohol. Plant Physiol. 1976 Feb;57(2):245–248. doi: 10.1104/pp.57.2.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coolbaugh R. C., Hell D. R., West C. A. Comparative Effects of Substituted Pyrimidines on Growth and Gibberellin Biosynthesis in Gibberella fujikuroi. Plant Physiol. 1982 Mar;69(3):712–716. doi: 10.1104/pp.69.3.712. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coolbaugh R. C., Hirano S. S., West C. A. Studies on the Specificity and Site of Action of alpha-Cyclopropyl-alpha-[p-methoxyphenyl]-5-pyrimidine Methyl Alcohol (Ancymidol), a Plant Growth Regulator. Plant Physiol. 1978 Oct;62(4):571–576. doi: 10.1104/pp.62.4.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Douglas T. J., Paleg L. G. Inhibition of Sterol Biosynthesis by 2-Isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine Carboxylate Methyl Chloride in Tobacco and Rat Liver Preparations. Plant Physiol. 1972 Mar;49(3):417–420. doi: 10.1104/pp.49.3.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Douglas T. J., Paleg L. G. Plant growth retardants as inhibitors of sterol biosynthesis in tobacco seedlings. Plant Physiol. 1974 Sep;54(3):238–245. doi: 10.1104/pp.54.3.238. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffman D. G., Bernhard N. R., Worth H. M., Emmerson J. L. Microsomal drug-metabolizing enzyme activity in rats given alpha-(2,4-dichlorophenyl)-alpha-phenyl-5-pyrimidinemethanol for period of 14 days to 2 years. Toxicol Appl Pharmacol. 1976 Mar;35(3):413–421. doi: 10.1016/0041-008x(76)90064-8. [DOI] [PubMed] [Google Scholar]
- Leopold A. C. Antagonism of some gibberellin actions by a substituted pyrimidine. Plant Physiol. 1971 Nov;48(5):537–540. doi: 10.1104/pp.48.5.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitropoulos K. A., Gibbons G. F. Effect of triarimol on cholesterol biosynthesis in rat-liver subcellular. Biochem Biophys Res Commun. 1976 Aug 9;71(3):892–900. doi: 10.1016/0006-291x(76)90915-3. [DOI] [PubMed] [Google Scholar]
- Shive J. B., Sisler H. D. Effects of Ancymidol (a Growth Retardant) and Triarimol (a Fungicide) on the Growth, Sterols, and Gibberellins of Phaseolus vulgaris (L.). Plant Physiol. 1976 Apr;57(4):640–644. doi: 10.1104/pp.57.4.640. [DOI] [PMC free article] [PubMed] [Google Scholar]