Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1982 May;69(5):998–1003. doi: 10.1104/pp.69.5.998

A New Method for the Determination of Hydraulic Conductivity and Cell Volume of Plant Cells by Pressure Clamp 1

Stephan Wendler 1, Ulrich Zimmermann 1
PMCID: PMC426346  PMID: 16662379

Abstract

Internodes of Chara corallina were used for experiments in which cell turgor pressure was clamped by means of the pressure probe technique. Essentially, the procedure consisted of a combination of volume and turgor pressure relaxations. This technique permits the determination of the cell volume by nonoptical means. The values obtained are in agreement with the ones determined by optical means. Furthermore, the hydraulic conductivity (Lp) was determined from the initial slope of the volume relaxation; the values thus obtained are in agreement with those calculated from the half-times of pressure relaxations. The determination of Lp from volume relaxation measurements has the advantage that the cell volume, the volumetric elastic modulus of the cell wall, and the internal osmotic pressure do not have to be known. Furthermore, the half-time of volume relaxation is longer than that of pressure relaxation, as shown by theory and experiment. This may be used to enhance the resolution of the relaxation measurement and, thus, to improve the accuracy of Lp determinations for higher plant cells which exhibit a very fast pressure relaxation.

Full text

PDF
998

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DAINTY J., GINZBURG B. Z. THE MEASUREMENT OF HYDRAULIC CONDUCTIVITY (OSMOTIC PERMEABILITY TO WATER) OF INTERNODAL CHARACEAN CELLS BY MEANS OF TRANSCELLULAR OSMOSIS. Biochim Biophys Acta. 1964 Jan 27;79:102–111. doi: 10.1016/0926-6577(64)90043-9. [DOI] [PubMed] [Google Scholar]
  2. Hüsken D., Steudle E., Zimmermann U. Pressure probe technique for measuring water relations of cells in higher plants. Plant Physiol. 1978 Feb;61(2):158–163. doi: 10.1104/pp.61.2.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. KEDEM O., KATCHALSKY A. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta. 1958 Feb;27(2):229–246. doi: 10.1016/0006-3002(58)90330-5. [DOI] [PubMed] [Google Scholar]
  4. Steudle E. Water-relation Parameters of Individual Mesophyll Cells of the Crassulacean Acid Metabolism Plant Kalanchoë daigremontiana. Plant Physiol. 1980 Dec;66(6):1155–1163. doi: 10.1104/pp.66.6.1155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Tomos A. D., Steudle E., Zimmermann U., Schulze E. D. Water Relations of Leaf Epidermal Cells of Tradescantia virginiana. Plant Physiol. 1981 Nov;68(5):1135–1143. doi: 10.1104/pp.68.5.1135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Zimmermann U., Steudle E. The pressure-dependence of the hydraulic conductivity, the membrane resistance and membrane potential during turgor pressure regulation in Valonia utricularis. J Membr Biol. 1974;16(4):331–352. doi: 10.1007/BF01872422. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES