Abstract
A number of fruits and bulky storage organs were studied with respect to the effect of pure O2 on the extent and time-course of the respiratory rise induced by ethylene. In one group, of which potato (Solanum tuberosum var. Russet) and carrot (Daucus carota) are examples, the response to ethylene in O2 is much greater than in air. In a second group, of which avocado (Persea americana Mill. var. Hass) and banana (Musa cavendishii Lambert var. Valery) are examples, air and O2 are equally effective. When O2-responsive organs are peeled, air and O2 synergize the ethylene response to the same extent in parsnip (Pastinaca sativa), whereas O2 is more stimulatory than air in carrots. In the latter instance, carrot flesh is considered to contribute significantly to diffusion resistance. The release of CO2, an ethylene antagonist, is recognized as another element in the response to peeling.
The potentiating effect of O2 is considered to be primarily on ethylene action in the development of the respiratory rise rather than on the respiration process per se. On the assumption that diffusion controls O2 movement into bulky organs and the peel represents the major diffusion barrier, simple calculations indicate that the O2 concentration in untreated organs in air readily sustains respiration. Furthermore, in ethylene-treated organs in pure O2, the internal O2 concentration is more than enough to maintain the high respiration rates. Skin conductivity to O2 is the fundamental parameter differentiating O2-responsive from O2-nonresponsive fruits and bulky storage organs. The large preceding the earliest response to ethylene, as well as the magnitude of the ethylene-induced respiratory rise, is also controlled by permeability characteristics of the peel.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ben-Yehoshua S., Robertson R. N., Biale J. B. Respiration & Internal Atmosphere of Avocado Fruit. Plant Physiol. 1963 Mar;38(2):194–201. doi: 10.1104/pp.38.2.194. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burg S. P., Burg E. A. Molecular requirements for the biological activity of ethylene. Plant Physiol. 1967 Jan;42(1):144–152. doi: 10.1104/pp.42.1.144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Day D. A., Arron G. P., Christoffersen R. E., Laties G. G. Effect of ethylene and carbon dioxide on potato metabolism: stimulation of tuber and mitochondrial respiration, and inducement of the alternative path. Plant Physiol. 1978 Nov;62(5):820–825. doi: 10.1104/pp.62.5.820. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MAPSON L. W., BURTON W. G. The terminal oxidases of the potato tuber. Biochem J. 1962 Jan;82:19–25. doi: 10.1042/bj0820019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Macdonald I. R. Oxygen tension a determining factor in the respiration of potato disks of varying thickness. Plant Physiol. 1967 Feb;42(2):227–232. doi: 10.1104/pp.42.2.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reid M. S., Pratt H. K. Effects of ethylene on potato tuber respiration. Plant Physiol. 1972 Feb;49(2):252–255. doi: 10.1104/pp.49.2.252. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rychter A., Janes H. W., Frenkel C. Cyanide-resistant Respiration in Freshly Cut Potato Slices. Plant Physiol. 1978 Apr;61(4):667–668. doi: 10.1104/pp.61.4.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Solomos T., Laties G. G. Induction of ethylene of cyanide-resistant respiration. Biochem Biophys Res Commun. 1976 May 17;70(2):663–671. doi: 10.1016/0006-291x(76)91098-6. [DOI] [PubMed] [Google Scholar]
- Solomos T., Laties G. G. Similarities between the Actions of Ethylene and Cyanide in Initiating the Climacteric and Ripening of Avocados. Plant Physiol. 1974 Oct;54(4):506–511. doi: 10.1104/pp.54.4.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Solomos T., Laties G. G. The mechanism of ethylene and cyanide action in triggering the rise in respiration in potato tubers. Plant Physiol. 1975 Jan;55(1):73–78. doi: 10.1104/pp.55.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
- THIMANN K. V., YOCUM C. S., HACKETT D. P. Terminal oxidases and growth in plant tissues. III. Terminal oxidation in potato tuber tissue. Arch Biochem Biophys. 1954 Nov;53(1):239–257. doi: 10.1016/0003-9861(54)90249-0. [DOI] [PubMed] [Google Scholar]
- Theologis A., Laties G. G. Relative Contribution of Cytochrome-mediated and Cyanide-resistant Electron Transport in Fresh and Aged Potato Slices. Plant Physiol. 1978 Aug;62(2):232–237. doi: 10.1104/pp.62.2.232. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woolley J. T. Potato tuber tissue respiration & ventilation. Plant Physiol. 1962 Nov;37(6):793–798. doi: 10.1104/pp.37.6.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
