Abstract
Regulation of enzymes of methionine biosynthesis was investigated by measuring the specific activities of O-phosphohomoserine-dependent cystathionine γ-synthase, O-phosphohomoserine sulfhydrylase, and O-acetylserine sulfhydrylase in Lemna paucicostata Hegelm. 6746 grown under various conditions. For cystathionine γ-synthase, it was observed that (a) adding external methionine (2 μm) decreased specific activity to 15% of control, (b) blocking methionine synthesis with 0.05 μml-aminoethoxyvinylglycine or with 36 μm lysine plus 4 μm threonine (Datko, Mudd 1981 Plant Physiol 69: 1070-1076) caused a 2- to 3-fold increase in specific activity, and (c) blocking methionine synthesis and adding external methionine led to the decreased specific activity characteristic of methionine addition alone. Activity in extracts from control cultures was unaffected by addition of methionine, lysine, threonine, lysine plus threonine, S-adenosylmethionine, or S-methylmethionine sulfonium to the assay mixture. Parallel studies of O-phosphohomoserine sulfhydrylase and O-acetylserine sulfhydrylase showed that O-phosphohomoserine sulfhydrylase activity responded to growth conditions identically to cystathionine γ-synthase activity, whereas O-acetylserine sulfhydrylase activity remained unaffected. Lemna extracts did not catalyze lanthionine formation from O-acetylserine and cysteine. Estimates of kinetic constants for the three enzyme activities indicate that O-acetylserine sulfhydrylase has much higher activity and affinity for sulfide than O-phosphohomoserine sulfhydrylase.
The results suggest that (a) methionine, or one of its products, regulates the amount of active cystathionine γ-synthase in Lemna, (b) O-phosphohomoserine sulfhydrylase and cystathionine γ-synthase are probably activities of one enzyme that has low specificity for its sulfur-containing substrate, and (c) O-acetylserine sulfhydrylase is a separate enzyme. The relatively high activity and affinity for sulfide of O-acetylserine sulfhydrylase provides an explanation in molecular terms for transsulfuration, and not direct sulfhydration, being the dominant pathway for homocysteine biosynthesis.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Brunold C. Regulation of Sulfate Assimilation in Plants: 7. Cysteine Inactivation of Adenosine 5'-Phosphosulfate Sulfotransferase in Lemna minor L. Plant Physiol. 1978 Mar;61(3):342–347. doi: 10.1104/pp.61.3.342. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chambers L. A., Trudinger P. A. Cysteine and S-sulphocysteine biosynthesis in bacteria. Arch Mikrobiol. 1971;77(2):165–184. doi: 10.1007/BF00408609. [DOI] [PubMed] [Google Scholar]
- DE LA HABA G., CANTONI G. L. The enzymatic synthesis of S-adenosyl-L-homocysteine from adenosine and homocysteine. J Biol Chem. 1959 Mar;234(3):603–608. [PubMed] [Google Scholar]
- Datka A. H., Mudd S. H., Giovanelli J. Homocysteine biosynthesis in green plants: studies of the homocysteine-forming sulfhydrylase. J Biol Chem. 1977 May 25;252(10):3436–3445. [PubMed] [Google Scholar]
- Datko A. H., Giovanelli J., Mudd S. H. Homocysteine biosynthesis in green plants. O-Phosphorylhomoserine as the physiological substrate for cystathionine gamma-synthase. J Biol Chem. 1974 Feb 25;249(4):1139–1155. [PubMed] [Google Scholar]
- Datko A. H., Mudd S. H., Giovanelli J. Lemna paucicostata Hegelm. 6746: DEVELOPMENT OF STANDARDIZED GROWTH CONDITIONS SUITABLE FOR BIOCHEMICAL EXPERIMENTATION. Plant Physiol. 1980 May;65(5):906–912. doi: 10.1104/pp.65.5.906. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Datko A. H., Mudd S. H., Giovanelli J., Macnicol P. K. Sulfur-containing Compounds in Lemna perpusilla 6746 Grown at a Range of Sulfate Concentrations. Plant Physiol. 1978 Oct;62(4):629–635. doi: 10.1104/pp.62.4.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Datko A. H., Mudd S. H. Methionine biosynthesis in lemna: inhibitor studies. Plant Physiol. 1982 May;69(5):1070–1076. doi: 10.1104/pp.69.5.1070. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaitonde M. K. A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J. 1967 Aug;104(2):627–633. doi: 10.1042/bj1040627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giovanelli J., Mudd S. H., Datko A. H. Homocysteine biosynthesis in green plants. Physiological importance of the transsulfuration pathway in Chlorella sorokiniana growing under steady state conditions with limiting sulfate. J Biol Chem. 1978 Aug 25;253(16):5665–5677. [PubMed] [Google Scholar]
- Macnicol P. K., Datko A. H., Giovanelli J., Mudd S. H. Homocysteine Biosynthesis in Green Plants: Physiological Importance of the Transsulfuration Pathway in Lemna paucicostata. Plant Physiol. 1981 Sep;68(3):619–625. doi: 10.1104/pp.68.3.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Madison J. T., Thompson J. F. Threonine synthetase from higher plants: stimulation by S-adenosylmethionine and inhibition by cysteine. Biochem Biophys Res Commun. 1976 Jul 26;71(2):684–691. doi: 10.1016/0006-291x(76)90842-1. [DOI] [PubMed] [Google Scholar]
- Matthews B. F., Widholm J. M. Expression of aspartokinase, dihydrodipicolinic acid synthase and homoserine dehydrogenase during growth of carrot cell suspension cultures on lysine- and threonine-supplemented media. Z Naturforsch C. 1979 Dec;34(12):1177–1185. doi: 10.1515/znc-1979-1216. [DOI] [PubMed] [Google Scholar]
- Mudd S. H., Finkelstein J. D., Irreverre F., Laster L. Transsulfuration in mammals. Microassays and tissue distributions of three enzymes of the pathway. J Biol Chem. 1965 Nov;240(11):4382–4392. [PubMed] [Google Scholar]
- Penefsky H. S. Reversible binding of Pi by beef heart mitochondrial adenosine triphosphatase. J Biol Chem. 1977 May 10;252(9):2891–2899. [PubMed] [Google Scholar]
- Reuveny Z., Filner P. Regulation of adenosine triphosphate sulfurylase in cultured tobacco cells. Effects of sulfur and nitrogen sources on the formation and decay of the enzyme. J Biol Chem. 1977 Mar 25;252(6):1858–1864. [PubMed] [Google Scholar]
- Rognes S. E., Lea P. J., Miflin B. J. S-adenosylmethionine--a novel regulator of aspartate kinase. Nature. 1980 Sep 25;287(5780):357–359. doi: 10.1038/287357a0. [DOI] [PubMed] [Google Scholar]
- Sakano K. Derepression and Repression of Lysine-sensitive Aspartokinase during in Vitro Culture of Carrot Root Tissue. Plant Physiol. 1979 Mar;63(3):583–585. doi: 10.1104/pp.63.3.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Umbarger H. E. Amino acid biosynthesis and its regulation. Annu Rev Biochem. 1978;47:532–606. doi: 10.1146/annurev.bi.47.070178.002533. [DOI] [PubMed] [Google Scholar]

