Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Feb 14;92(4):1062–1066. doi: 10.1073/pnas.92.4.1062

Identification of kappa opioid receptors in the immune system by indirect immunofluorescence.

D M Lawrence 1, W el-Hamouly 1, S Archer 1, J F Leary 1, J M Bidlack 1
PMCID: PMC42637  PMID: 7862634

Abstract

A method to visualize the kappa opioid receptor is described that uses a high-affinity fluorescein-conjugated opioid ligand and indirect immunofluorescence with the phycoerythrin fluorophore to amplify the signal. The mouse thymoma cell line R1E/TL8x.1.G1.OUAr.1 (R1EGO), which expresses the kappa 1 but not mu or delta opioid receptors, was used as a positive control for fluorescence labeling. A fluorescein isothiocyanate-conjugated arylacetamide (FITC-AA) compound displaying high affinity for the kappa opioid receptor was synthesized. R1EGO cells were incubated with FITC-AA, in the absence or presence of the kappa-selective opioid antagonist nor-binaltorphimine (nor-BNI) as a competitor. By using fluorescence microscopy and flow cytometry, incubation of R1EGO cells with FITC-AA alone was not sufficient for the detection of specific staining of the kappa opioid receptor. To amplify the FITC-AA fluorescence, the fluorescein served as a hapten for subsequent antibody detection. R1EGO cells were incubated with FITC-AA, followed by biotinylated rabbit anti-fluorescein IgG and extravidin-conjugated R-phycoerythrin. By using this approach, R1EGO cells were stained with phycoerythrin-amplified FITC-AA, and the staining was displaced with nor-BNI. Flow cytometry showed that titrations of both FITC-AA and nor-BNI produced saturable concentration-dependent changes in the median phycoerythrin fluorescence intensity, with optimal staining at 30 microM FITC-AA. Up to 80% of the fluorescence above background was inhibited by nor-BNI. Freshly isolated thymocytes from C57BL/6ByJ mice also showed nor-BNI-sensitive staining with the FITC-AA amplification. This sensitive method of indirect phycoerythrin immunofluorescence can be used to amplify any fluorescein-conjugated opioid ligand for the detection of opioid receptors.

Full text

PDF
1062

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Archer S., Medzihradsky F., Seyed-Mozaffari A., Emmerson P. J. Synthesis and characterization of 7-nitrobenzo-2-oxa-1,3-diazole (NBD)-labeled fluorescent opioids. Biochem Pharmacol. 1992 Jan 22;43(2):301–306. doi: 10.1016/0006-2952(92)90292-q. [DOI] [PubMed] [Google Scholar]
  2. Aubin J. E. Autofluorescence of viable cultured mammalian cells. J Histochem Cytochem. 1979 Jan;27(1):36–43. doi: 10.1177/27.1.220325. [DOI] [PubMed] [Google Scholar]
  3. Bailey D., Gonzales L., Metlay M. Interaction of endogenous opioids and developing T lymphocytes. Ann N Y Acad Sci. 1988;540:702–703. doi: 10.1111/j.1749-6632.1988.tb27218.x. [DOI] [PubMed] [Google Scholar]
  4. Barlow J. J., Blackburn T. P., Costello G. F., James R., Le Count D. J., Main B. G., Pearce R. J., Russell K., Shaw J. S. Structure/activity studies related to 2-(3,4-dichlorophenyl)-N-methyl-N-[2-(1-pyrrolidinyl)-1-substituted- ethyl]acetamides: a novel series of potent and selective kappa-opioid agonists. J Med Chem. 1991 Nov;34(11):3149–3158. doi: 10.1021/jm00115a001. [DOI] [PubMed] [Google Scholar]
  5. Bidlack J. M., Saripalli L. D., Lawrence D. M. kappa-Opioid binding sites on a murine lymphoma cell line. Eur J Pharmacol. 1992 Nov 2;227(3):257–265. doi: 10.1016/0922-4106(92)90003-e. [DOI] [PubMed] [Google Scholar]
  6. Carr D. J., DeCosta B. R., Kim C. H., Jacobson A. E., Guarcello V., Rice K. C., Blalock J. E. Opioid receptors on cells of the immune system: evidence for delta- and kappa-classes. J Endocrinol. 1989 Jul;122(1):161–168. doi: 10.1677/joe.0.1220161. [DOI] [PubMed] [Google Scholar]
  7. Chen Y., Mestek A., Liu J., Hurley J. A., Yu L. Molecular cloning and functional expression of a mu-opioid receptor from rat brain. Mol Pharmacol. 1993 Jul;44(1):8–12. [PubMed] [Google Scholar]
  8. Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
  9. Chuang L. F., Chuang T. K., Killam K. F., Jr, Chuang A. J., Kung H. F., Yu L., Chuang R. Y. Delta opioid receptor gene expression in lymphocytes. Biochem Biophys Res Commun. 1994 Aug 15;202(3):1291–1299. doi: 10.1006/bbrc.1994.2071. [DOI] [PubMed] [Google Scholar]
  10. Clark J. A., Liu L., Price M., Hersh B., Edelson M., Pasternak G. W. Kappa opiate receptor multiplicity: evidence for two U50,488-sensitive kappa 1 subtypes and a novel kappa 3 subtype. J Pharmacol Exp Ther. 1989 Nov;251(2):461–468. [PubMed] [Google Scholar]
  11. Corrêa F. M., Innis R. B., Rouot B., Pasternak G. W., Snyder S. H. Fluorescent probes of alpha- and beta-adrenergic and opiate receptors: biochemical and histochemical evaluation. Neurosci Lett. 1980 Jan;16(1):47–53. doi: 10.1016/0304-3940(80)90099-3. [DOI] [PubMed] [Google Scholar]
  12. Evans C. J., Keith D. E., Jr, Morrison H., Magendzo K., Edwards R. H. Cloning of a delta opioid receptor by functional expression. Science. 1992 Dec 18;258(5090):1952–1955. doi: 10.1126/science.1335167. [DOI] [PubMed] [Google Scholar]
  13. Fournie-Zaluski M. C., Gacel G., Roques B. P., Senault B., Lecomte J. M., Malfroy B., Swerts J. P., Schwartz J. C. Fluorescent enkephalin derivatives with biological activity. Biochem Biophys Res Commun. 1978 Jul 14;83(1):300–305. doi: 10.1016/0006-291x(78)90431-x. [DOI] [PubMed] [Google Scholar]
  14. Glasel J. A., Venn R. F. The sensitivity of opiate receptors and ligands to short wavelength ultraviolet light. Life Sci. 1981 Jul 20;29(3):221–228. doi: 10.1016/0024-3205(81)90237-x. [DOI] [PubMed] [Google Scholar]
  15. Goldstein A., Nestor J. J., Jr, Naidu A., Newman S. R. "DAKLI": a multipurpose ligand with high affinity and selectivity for dynorphin (kappa opioid) binding sites. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7375–7379. doi: 10.1073/pnas.85.19.7375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hazum E., Chang K. J., Shechter Y., Wilkinson S., Cuatrecasas P. Fluorescent and photo-affinity enkephalin derivatives: preparation and interaction with opiate receptors. Biochem Biophys Res Commun. 1979 Jun 13;88(3):841–846. doi: 10.1016/0006-291x(79)91485-2. [DOI] [PubMed] [Google Scholar]
  17. Kieffer B. L., Befort K., Gaveriaux-Ruff C., Hirth C. G. The delta-opioid receptor: isolation of a cDNA by expression cloning and pharmacological characterization. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12048–12052. doi: 10.1073/pnas.89.24.12048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kolb V. M., Koman A., Terenius L. Fluorescent probes for opioid receptors. Life Sci. 1983;33 (Suppl 1):423–426. doi: 10.1016/0024-3205(83)90532-5. [DOI] [PubMed] [Google Scholar]
  19. Lawrence D. M., Bidlack J. M. Kappa opioid binding sites on the R1.1 murine lymphoma cell line: sensitivity to cations and guanine nucleotides. J Neuroimmunol. 1992 Dec;41(2):223–230. doi: 10.1016/0165-5728(92)90073-t. [DOI] [PubMed] [Google Scholar]
  20. Lawrence D. M., Bidlack J. M. The kappa opioid receptor expressed on the mouse R1.1 thymoma cell line is coupled to adenylyl cyclase through a pertussis toxin-sensitive guanine nucleotide-binding regulatory protein. J Pharmacol Exp Ther. 1993 Sep;266(3):1678–1683. [PubMed] [Google Scholar]
  21. Lawrence D. M., Joseph D. B., Bidlack J. M. Kappa opioid receptors expressed on three related thymoma cell lines. Differences in receptor-effector coupling. Biochem Pharmacol. 1995 Jan 6;49(1):81–89. doi: 10.1016/0006-2952(94)00440-w. [DOI] [PubMed] [Google Scholar]
  22. Mihara H., Lee S., Shimohigashi Y., Aoyagi H., Kato T., Izumiya N., Costa T. Delta and mu opiate receptor probes: fluorescent enkephalins with high receptor affinity and specificity. FEBS Lett. 1985 Nov 25;193(1):35–38. doi: 10.1016/0014-5793(85)80074-0. [DOI] [PubMed] [Google Scholar]
  23. Oi V. T., Glazer A. N., Stryer L. Fluorescent phycobiliprotein conjugates for analyses of cells and molecules. J Cell Biol. 1982 Jun;93(3):981–986. doi: 10.1083/jcb.93.3.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Paterson S. J., Robson L. E., Kosterlitz H. W. Control by cations of opioid binding in guinea pig brain membranes. Proc Natl Acad Sci U S A. 1986 Aug;83(16):6216–6220. doi: 10.1073/pnas.83.16.6216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Portoghese P. S., Lipkowski A. W., Takemori A. E. Binaltorphimine and nor-binaltorphimine, potent and selective kappa-opioid receptor antagonists. Life Sci. 1987 Mar 30;40(13):1287–1292. doi: 10.1016/0024-3205(87)90585-6. [DOI] [PubMed] [Google Scholar]
  26. Segal D. M., Titus J. A., Stephany D. A. Fluorescence flow cytometry in the study of lymphoid cell receptors. Methods Enzymol. 1987;150:478–492. doi: 10.1016/0076-6879(87)50101-x. [DOI] [PubMed] [Google Scholar]
  27. Sibinga N. E., Goldstein A. Opioid peptides and opioid receptors in cells of the immune system. Annu Rev Immunol. 1988;6:219–249. doi: 10.1146/annurev.iy.06.040188.001251. [DOI] [PubMed] [Google Scholar]
  28. Yasuda K., Raynor K., Kong H., Breder C. D., Takeda J., Reisine T., Bell G. I. Cloning and functional comparison of kappa and delta opioid receptors from mouse brain. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6736–6740. doi: 10.1073/pnas.90.14.6736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zukin R. S., Eghbali M., Olive D., Unterwald E. M., Tempel A. Characterization and visualization of rat and guinea pig brain kappa opioid receptors: evidence for kappa 1 and kappa 2 opioid receptors. Proc Natl Acad Sci U S A. 1988 Jun;85(11):4061–4065. doi: 10.1073/pnas.85.11.4061. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES