Abstract
Leaf elongation rate, water potential, and osmotic potential were measured in the fifth leaf of maize (Zea mays L.) plants growing in soil from which water was withheld for varying times. Elongation occurred in the basal region, which was enclosed by other leaf sheaths. When water was withheld from the soil, leaf elongation decreased and eventually ceased even though enough solutes accumulated in the elongating region to maintain turgor virtually constant. In the exposed blade, however, turgor was lost and wilt symptoms developed. If the night was prolonged, the elongating region lost much of its ability to accumulate solute, which suggests that the accumulating solutes were of recent photosynthetic origin. Under these conditions, leaf elongation was restricted to higher water potentials than under the usual photoperiodic regime.
The solute accumulation and turgor maintenance of the elongating region at low water potentials indicate that differences in water status and physiological behavior exist along grass leaves and that the water status of the elongating region cannot be inferred from measurements on the exposed blade. The increased sensitivity of leaf elongation to low water potentials in prolonged darkness indicates that accumulation of solute and maintenance of turgor play a role in maintaining leaf growth. However, the inhibition of elongation that occurred even when solute accumulation was sufficient to completely maintain turgor indicates that some factor other than photosynthate supply and turgor also affected growth and caused most of the losses in growth under dry conditions.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boyer J. S. Leaf enlargement and metabolic rates in corn, soybean, and sunflower at various leaf water potentials. Plant Physiol. 1970 Aug;46(2):233–235. doi: 10.1104/pp.46.2.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greacen E. L., Oh J. S. Physics of root growth. Nat New Biol. 1972 Jan 5;235(53):24–25. doi: 10.1038/newbio235024a0. [DOI] [PubMed] [Google Scholar]
- Jones M. M. Osmotic adjustment in leaves of sorghum in response to water deficits. Plant Physiol. 1978 Jan;61(1):122–126. doi: 10.1104/pp.61.1.122. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsuda K., Riazi A. Stress-induced osmotic adjustment in growing regions of barley leaves. Plant Physiol. 1981 Sep;68(3):571–576. doi: 10.1104/pp.68.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Molz F. J. Growth-induced Water Potentials in Plant Cells and Tissues. Plant Physiol. 1978 Sep;62(3):423–429. doi: 10.1104/pp.62.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Twente J. W., Twente J. A. Regulation of hibernating periods by temperature. Proc Natl Acad Sci U S A. 1965 Oct;54(4):1044–1051. [PMC free article] [PubMed] [Google Scholar]


