Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1982 May;69(5):1156–1160. doi: 10.1104/pp.69.5.1156

Control by Phytochrome of Cytoplasmic Precursor rRNA Synthesis in the Cotyledons of Mustard Seedlings 1

Wilfried Thien 1,2, Peter Schopfer 1
PMCID: PMC426376  PMID: 16662362

Abstract

The influence of phytochrome (high irradiance reaction; operationally, continuous far red light) on the incorporation of [3H]uridine into the cytoplasmic 2.5 megadalton precursor rRNA in the cotyledons of mustard (Sinapis alba L.) seedlings has been investigated. After irradiating 36-hour-old etiolated seedlings with 12 hours of far red light, the rate of incorporation is stimulated about 2-fold, leading to 50% labeling of the precursor rRNA pool about 15 minutes after the tracer has reached the nucleotide precursor pool. In the dark control, there is a significantly smaller pool of precursor rRNA which is half-saturated with label only after about 27 minutes. Since neither the specific radioactivity of the UTP pool nor the processing of the precursor rRNA demonstrate a corresponding light-dependent change, it is concluded that phytochrome mediates an increase of the transcription of the rRNA genes. This gene activation accounts for the increased accumulation of mature cytoplasmic rRNA during the course of photomorphogenesis of the cotyledons.

Full text

PDF
1156

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apel K. Phytochrome-induced appearance of mRNA activity for the apoprotein of the light-harvesting chlorophyll a/b protein of barley (Hordeum vulgare). Eur J Biochem. 1979 Jun;97(1):183–188. doi: 10.1111/j.1432-1033.1979.tb13101.x. [DOI] [PubMed] [Google Scholar]
  2. Appelqvist L. A., Stumpf P. K., von Wettstein D. Lipid synthesis and ultrastructure of isolated barley chloroplasts. Plant Physiol. 1968 Feb;43(2):163–187. doi: 10.1104/pp.43.2.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cashel M., Lazzarini R. A., Kalbacher B. An improved method for thin-layer chromatography of nucleotide mixtures containing 32P-labelled orthophosphate. J Chromatogr. 1969 Mar 11;40(1):103–109. doi: 10.1016/s0021-9673(01)96624-5. [DOI] [PubMed] [Google Scholar]
  4. Dolecki G., Anderson D., Smith L. D. A quantitative method for the measurement of cellular guanosine triphosphate pool specific activities. Anal Biochem. 1976 Mar;71(1):37–41. doi: 10.1016/0003-2697(76)90007-5. [DOI] [PubMed] [Google Scholar]
  5. Grierson D. Characterization of ribonucleic acid components from leaves of Phaseolus aureus. Eur J Biochem. 1974 May 15;44(2):509–515. doi: 10.1111/j.1432-1033.1974.tb03509.x. [DOI] [PubMed] [Google Scholar]
  6. Grierson D., Loening U. Ribosomal RNA precursors and the synthesis of chloroplast and cytoplasmic ribosomal ribonucleic acid in leaves of Phaseolus aureus. Eur J Biochem. 1974 May 15;44(2):501–507. doi: 10.1111/j.1432-1033.1974.tb03508.x. [DOI] [PubMed] [Google Scholar]
  7. Hartley M. R., Head C. The synthesis of chloroplast high-molecular-weight ribosomal ribonucleic acid in spinach. Eur J Biochem. 1979 May 15;96(2):301–309. doi: 10.1111/j.1432-1033.1979.tb13041.x. [DOI] [PubMed] [Google Scholar]
  8. Jackson M., Ingle J. The interpretation of studies on rapidly labeled ribonucleic Acid in higher plants. Plant Physiol. 1973 Feb;51(2):412–414. doi: 10.1104/pp.51.2.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Maher E. P., Fox D. P. Multiplicity of ribosomal RNA genes in Vicia species with different nuclear DNA contents. Nat New Biol. 1973 Oct 10;245(145):170–172. doi: 10.1038/newbio245170a0. [DOI] [PubMed] [Google Scholar]
  10. Melanson D. L. Regulation of ribosomal RNA accumulation by auxin in artichoke tissue. Plant Physiol. 1978 Nov;62(5):761–765. doi: 10.1104/pp.62.5.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rogers M. E., Loening U. E., Fraser R. S. Ribosomal RNA precursors in plants. J Mol Biol. 1970 May 14;49(3):681–692. doi: 10.1016/0022-2836(70)90291-3. [DOI] [PubMed] [Google Scholar]
  12. Seitz U., Seitz U. The molecular weight of rRNA precursor molecules and their processing in higher plant cells. Z Naturforsch C. 1979 Mar-Apr;34(3-4):253–258. [PubMed] [Google Scholar]
  13. Smith H. Phytochrome-mediated assembly of polyribosomes in etiolated bean leaves. Evidence for post-transciptional regulation of development. Eur J Biochem. 1976 May 17;65(1):161–170. doi: 10.1111/j.1432-1033.1976.tb10401.x. [DOI] [PubMed] [Google Scholar]
  14. Thien W., Schopfer P. Control by Phytochrome of Cytoplasmic and Plastid rRNA Accumulation in Cotyledons of Mustard Seedlings in the Absence of Photosynthesis. Plant Physiol. 1975 Nov;56(5):660–664. doi: 10.1104/pp.56.5.660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Tobin E. M. Light regulation of specific mRNA species in Lemna gibba L. G-3. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4749–4753. doi: 10.1073/pnas.75.10.4749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Trewavas A. The Turnover of Nucleic Acids in Lemna minor. Plant Physiol. 1970 Jun;45(6):742–751. doi: 10.1104/pp.45.6.742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Whitcome P., Fry K., Salser W. The use of ribosubstitution techniques for determining DNA sequences. Methods Enzymol. 1974;29:295–321. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES