Abstract
Methylobacterium sp. strain L2-4 is an efficient nitrogen-fixing leaf colonizer of biofuel crop Jatropha curcas. This strain is able to greatly improve the growth and seed yield of Jatropha curcas and is the second reported genome sequence of plant growth-promoting bacteria isolated from Jatropha curcas.
GENOME ANNOUNCEMENT
As biofuel crop Jatropha curcas is targeted to marginal land where soil nutrient is low, the requirement for nitrogen fertilizer will be higher than other crops. The use of plant growth-promoting bacteria is a promising approach to improve productivity and the green index of Jatropha biodiesel (1–3). Methylobacterium species are abundant on plant leaf tissues as endophytes or epiphytes on leaves (4–11) and exert a positive effect on the growth and development of plants by playing a role in seed germination and root development, drought tolerance, growth promotion, and increasing the yield of agricultural plants (12, 13). Previously, some Methylobacterium strains have been found in symbiotic association with Crotalaria and Lotononis, both legumes where the Methylobacterium induces nodulation and fix nitrogen in the nodules (14, 15). We have identified an efficient nitrogen-fixing leaf-colonizer, strain L2-4 belonging to Methylobacterium, from surface-sterilized leaf tissues of Jatropha curcas. It is capable of fixing nitrogen to about 634.5 nmol C2H4 released h−1 bottle−1 as measured by Hardy’s acetylene method (16, 17).
Genome sequencing was carried out using the GS FLX Titanium platform at Macrogen, Inc. (Republic of Korea). The sequence reads were assembled using the GS De Novo Assembler (v2.6). The genome was annotated using the Rapid Annotations using Subsystems Technology server employing the GLIMMER gene caller (18). The draft genome sequence was also annotated using the NCBI Prokaryotic Genome Annotation Pipeline (PGAAP) (http://www.ncbi.nlm.nih.gov/genome/annotation_prok/). The draft genome sequence of strain L2-4 included 342 contigs (>500 bp in size), with a calculated genome size 6,800,472 bp long, containing 6,382 protein-coding genes and an average G+C content of 70.8%. A total of 6,255 genes were assigned though the PGAAP and categorized into 6,092 coding sequences, 103 pseudogenes, 5 rRNAs (16S, 23S), 54 tRNAs, 1 noncoding RNA (ncRNA), and 87 frameshifted genes. Comparison of its 16S rRNA genes with EzGenome (http://ezgenome.ezbiocloud.net/) using BLASTn revealed that it shares the highest nucleic acid identity with the UV-resistant Methylobacterium radiotolerans JCM 2831 (99%), followed by Methylobacterium sp. GXF4 (98%) and Methylobacterium extorquens AM1 (95%).
Strain L2-4 possesses a conserved cluster of genes associated with photosynthesis, including genes encoding the light-harvesting complex and the reaction center, and genes involved in biosynthesis of bacteriochlorophyll (bch) and carotenoids (crt). Further analyses of this genome will include comparisons with other Methylobacterium genomes already reported (13, 17, 19–21). The genome of strain L2-4 presents several genes involved in metabolic pathways that may contribute to the promotion of plant growth, including genes for the production of auxin biosynthesis, zeatin (miaA), cobalamin synthesis protein (cob), urea metabolism (ureABCDEFG), biosorption of heavy metals or decrease of metal toxicity, endoglucanase (celC), phytase, C-P lyase system (phn), pyrroloquinoline quinone biosynthesis protein (pqqABCDE), and methylotrophy gene clusters (mxa). In addition, the gene coding for the 1-aminocyclopropane-1-carboxylate deaminase (acdS) gene is also observed, which may suggest contributions to plant development under stress conditions (22). The genome information presented here will allow in-depth functional and comparative genome analyses to provide a better understanding of beneficial plant-bacterial associations.
Nucleotide sequence accession numbers.
This whole-genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession no. AVNX00000000. The version described in this paper is version AVNX01000000.
ACKNOWLEDGMENTS
We thank the Temasek Trust and the Singapore Economic Development Board for the financial funding for the work.
Footnotes
Citation Madhaiyan M, Chan KL, Ji L. 2014. Draft genome sequence of Methylobacterium sp. strain L2-4, a leaf-associated endophytic N-fixing bacterium isolated from Jatropha curcas L. Genome Announc. 2(6):e01306-14. doi:10.1128/genomeA.01306-14.
REFERENCES
- 1. Madhaiyan M, Peng N, Te NS, Hsin I C, Lin C, Lin F, Reddy C, Yan H, Ji L. 2013. Improvement of plant growth and seed yield in Jatropha curcas by a novel nitrogen-fixing root associated Enterobacter species. Biotechnol. Biofuels 6:140–140. 10.1186/1754-6834-6-140. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2. Madhaiyan M, Peng N, Ji L. 2013. Complete genome sequence of Enterobacter sp. strain R4-368, an endophytic N-fixing gammaproteobacterium isolated from surface-sterilized roots of Jatropha curcas L. Genome Announc. 1(4):e00544-13. 10.1128/genomeA.00544-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3. Madhaiyan M, Jin TY, Roy JJ, Kim S-J, Weon H-Y, Kwon S-W, Ji L. 2013. Pleomorphomonas diazotrophica sp. nov., an endophytic N-fixing bacterium isolated from root tissue of Jatropha curcas L. Int. J. Syst. Evol. Microbiol. 63:2477–2483. 10.1099/ijs.0.044461-0. [DOI] [PubMed] [Google Scholar]
- 4. Corpe W, Rheem S. 1989. Ecology of the methylotrophic bacteria on living leaf surfaces. FEMS Microbiol. Lett. 62:243–249. 10.1111/j.1574-6968.1989.tb03698.x. [DOI] [Google Scholar]
- 5. Andrews JH, Hirano SS. 1991. Microbial ecology of leaves, vol 499, p 579–580 Springer-Verlag, New York, NY. [Google Scholar]
- 6. Sy A, Timmers AC, Knief C, Vorholt JA. 2005. Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl. Environ. Microbiol. 71:7245–7252. 10.1128/AEM.71.11.7245-7252.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7. Elbeltagy A, Nishioka K, Suzuki H, Sato T, Sato Y-I, Morisaki H, Mitsui H, Minamisawa K. 2000. Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. Soil Sci. Plant Nutr. 46:617–629. 10.1080/00380768.2000.10409127. [DOI] [Google Scholar]
- 8. Pirttilä AM, Laukkanen H, Pospiech H, Myllylä R, Hohtola A. 2000. Detection of intracellular bacteria in the buds of Scotch pine (Pinus sylvestris L.) by in situ hybridization. Appl. Environ. Microbiol. 66:3073–3077. 10.1128/AEM.66.7.3073-3077.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9. Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, von Mering C, Vorholt JA. 2009. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc. Natl. Acad. Sci. U. S. A. 106:16428–16433. 10.1073/pnas.0905240106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10. Lacava PT, Araújo WL, Marcon J, Maccheroni W, Azevedo JL. 2004. Interaction between endophytic bacteria from citrus plants and the phytopathogenic bacteria Xylella fastidiosa, causal agent of citrus-variegated chlorosis. Lett. Appl. Microbiol. 39:55–59. 10.1111/j.1472-765X.2004.01543.x. [DOI] [PubMed] [Google Scholar]
- 11. Van Aken B, Yoon JM, Schnoor JL. 2004. Biodegradation of nitro-substituted explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5,7-tetranitro-1,3,5-tetrazocine by a phytosymbiotic Methylobacterium sp. associated with poplar tissues (Populus deltoids × nigra DN34). Appl. Environ. Microbiol. 70:508–517. 10.1128/AEM.70.1.508-517.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12. Abanda-Nkpwatt D, Müsch M, Tschiersch J, Boettner M, Schwab W. 2006. Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site. J. Exp. Bot. 57:4025–4032. 10.1093/jxb/erl173. [DOI] [PubMed] [Google Scholar]
- 13. Kwak M-J, Jeong H, Madhaiyan M, Lee Y, Sa T-M, Oh TK, Kim JF. 2014. Genome information of Methylobacterium oryzae, a plant-probiotic methylotroph in the phyllosphere. PLoS One 9:e106704. 10.1371/journal.pone.0106704. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14. Jaftha JB, Strijdom BW, Steyn PL. 2002. Characterization of pigmented methylotrophic bacteria which nodulate Lotononis bainesii. Syst. Appl. Microbiol. 25:440–449. 10.1078/0723-2020-00124. [DOI] [PubMed] [Google Scholar]
- 15. Sy A, Giraud E, Jourand P, Garcia N, Willems A, de Lajudie P, Prin Y, Neyra M, Gillis M, Boivin-Masson C, Dreyfus B. 2001. Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J. Bacteriol. 183:214–220. 10.1128/JB.183.1.214-220.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16. Jourand P, Giraud E, Béna G, Sy A, Willems A, Gillis M, Dreyfus B, de Lajudie P. 2004. Methylobacterium nodulans sp. nov., for a group of aerobic, facultatively methylotrophic, legume root-nodule-forming and nitrogen-fixing bacteria. Int. J. Syst. Evol. Microbiol. 54:2269–2273. 10.1099/ijs.0.02902-0. [DOI] [PubMed] [Google Scholar]
- 17. Marx CJ, Bringel F, Chistoserdova L, Moulin L, Haque MFU, Fleischman DE, Gruffaz C, Jourand P, Knief C, Lee M-C, Muller EEL, Nadalig T, Peyraud R, Roselli S, Russ L, Goodwin LA, Ivanova N, Kyrpides N, Lajus A, Land ML, Médigue C, Mikhailova N, Nolan M, Woyke T, Stolyar S, Vorholt JA, Vuilleumier S. 2012. Complete genome sequences of six strains of the genus Methylobacterium. J. Bacteriol. 194:4746–4748. 10.1128/JB.01009-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O. 2008. The RAST server: Rapid Annotations using Subsystems Technology. BMC Genomics 9:75. 10.1186/1471-2164-9-75. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19. Vuilleumier S, Chistoserdova L, Lee M-C, Bringel F, Lajus A, Zhou Y, Gourion B, Barbe V, Chang J, Cruveiller S, Dossat C, Gillett W, Gruffaz C, Haugen E, Hourcade E, Levy R, Mangenot S, Muller E, Nadalig T, Pagni M, Penny C, Peyraud R, Robinson DG, Roche D, Rouy Z, Saenampechek C, Salvignol G, Vallenet D, Wu Z, Marx CJ, Vorholt JA, Olson MV, Kaul R, Weissenbach J, Médigue C, Lidstrom ME. 2009. Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources. PLoS One 4:e5584. 10.1371/journal.pone.0005584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20. Gan HM, Chew TH, Hudson AO, Savka MA. 2012. Genome sequence of Methylobacterium sp. strain GXF4, a xylem-associated bacterium isolated from Vitis vinifera L. grapevine. J. Bacteriol. 194:5157–5158. 10.1128/JB.01201-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. Almeida DM, Dini-Andreote F, Neves AAC, Ramos RTJ, Andreote FD, Carneiro AR, de Souza Lima AO, de Sá PHCG, Barbosa MSR, Araújo WL. 2013. Draft genome sequence of Methylobacterium mesophilicum strain SR1. 6/6, isolated from Citrus sinensis. Genome Announc. 1(3):e00356-13. 10.1128/genomeA.00356-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22. Madhaiyan M, Poonguzhali S, Ryu J, Sa T. 2006. Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 224:268–278. 10.1007/s00425-005-0211-y. [DOI] [PubMed] [Google Scholar]