Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1982 May;69(5):1222–1225. doi: 10.1104/pp.69.5.1222

Effect of Carbon Dioxide and Light on Ethylene Production in Intact Sunflower Plants 1

Pawan K Bassi 1, Mary S Spencer 1
PMCID: PMC426388  PMID: 16662374

Abstract

High CO2 concentration (0.5%) increased the rate of ethylene production, measured in a continuous flow system, in intact sunflower (Helianthus annuus L.) plants. However, the rate of ethylene production subsided to near control levels after approximately 24 hours. The effect of high CO2 could only be observed in light. Although high CO2 concentration had no effect on the rate of ethylene production in darkness, prolonged exposure (approximately 16 hours) of plants to high CO2 in the dark prevented the increase in ethylene production when the plants were exposed to light and high CO2.

Full text

PDF
1222

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abeles F. B., Lonski J. Stimulation of lettuce seed germination by ethylene. Plant Physiol. 1969 Feb;44(2):277–280. doi: 10.1104/pp.44.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aharoni N., Lieberman M. Ethylene as a regulator of senescence in tobacco leaf discs. Plant Physiol. 1979 Nov;64(5):801–804. doi: 10.1104/pp.64.5.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bassi P. K., Spencer M. S. A Cuvette Design for Measurement of Ethylene Production and Carbon Dioxide Exchange by Intact Shoots under Controlled Environmental Conditions. Plant Physiol. 1979 Sep;64(3):488–490. doi: 10.1104/pp.64.3.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dhawan K. R., Bassi P. K., Spencer M. S. Effects of carbon dioxide on ethylene production and action in intact sunflower plants. Plant Physiol. 1981 Oct;68(4):831–834. doi: 10.1104/pp.68.4.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eastwell K. C., Bassi P. K., Spencer M. E. Comparison and evaluation methods for the removal of ethylene and other hydrocarbons from air for biological studies. Plant Physiol. 1978 Nov;62(5):723–726. doi: 10.1104/pp.62.5.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Goeschl J. D., Pratt H. K., Bonner B. A. An effect of light on the production of ethylene and the growth of the plumular portion of etiolated pea seedlings. Plant Physiol. 1967 Aug;42(8):1077–1080. doi: 10.1104/pp.42.8.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Janes H. W., Loercher L. Effects of red light and ethylene on growth of etiolated lettuce seedlings. Plant Physiol. 1976 Mar;57(3):420–423. doi: 10.1104/pp.57.3.420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kang B. G., Burg S. P. Involvement of Ethylene in Phytochrome-mediated Carotenoid Synthesis. Plant Physiol. 1972 Apr;49(4):631–633. doi: 10.1104/pp.49.4.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kang B. G., Burg S. P. Relation of Phytochrome-enhanced Geotropic Sensitivity to Ethylene Production. Plant Physiol. 1972 Jul;50(1):132–135. doi: 10.1104/pp.50.1.132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Samimy C. Effect of light on ethylene production and hypocotyl growth of soybean seedlings. Plant Physiol. 1978 May;61(5):772–774. doi: 10.1104/pp.61.5.772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sisler E. C. Measurement of ethylene binding in plant tissue. Plant Physiol. 1979 Oct;64(4):538–542. doi: 10.1104/pp.64.4.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Young R. E., Romani R. J., Biale J. B. Carbon Dioxide Effects on Fruit Respiration . II. Response of Avocados, Bananas, & Lemons. Plant Physiol. 1962 May;37(3):416–422. doi: 10.1104/pp.37.3.416. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES