Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1982 Jun;69(6):1257–1262. doi: 10.1104/pp.69.6.1257

Fatty Acid Synthetase of Spinacia oleracea Leaves 1

Takashi Shimakata 1, Paul K Stumpf 1
PMCID: PMC426397  PMID: 16662382

Abstract

The molecular organization of fatty acid synthetase system in spinach (Spinacia oleracea L. var. Viroflay) leaves was examined by a procedure similar to that employed for the safflower system (Carthamus tinctorius var. UC-1). The crude extract contained all the component activities (acetyl-CoA:ACP transacylase, malonyl-CoA:ACP transacylase, β-ketoacyl-ACP synthetase, β-ketoacyl-ACP reductase, β-hydroxyacyl-ACP dehydrase, and enoyl-ACP reductase [I]) involved in the synthesis of fatty acids, but enoyl-ACP reductase (II) present in safflower seeds extract could not be detected spectrophotometrically. By polyethylene glycol fractionation followed by several chromatographic procedures, i.e. Sephadex G-200, hydroxyapatite, and blue-agarose, the component enzymes were clearly separated from one another. Properties of β-ketoacyl-ACP reductase, β-hydroxyacyl-ACP dehydrase, and enoyl-ACP reductase (I) from spinach were compared with the same enzymes in safflower seeds and Escherichia coli.

From these results, it was concluded that the fatty acid synthetase system of spinach leaves, as well as that of safflower seeds, was nonassociated and similar to the Escherichia coli system.

Full text

PDF
1257

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALBERTS A. W., MAJERUS P. W., TALAMO B., VAGELOS P. R. ACYL-CARRIER PROTEIN. II. INTERMEDIARY REACTIONS OF FATTY ACID SYNTHESIS. Biochemistry. 1964 Oct;3:1563–1571. doi: 10.1021/bi00898a030. [DOI] [PubMed] [Google Scholar]
  2. Birge C. H., Vagelos P. R. Acyl carrier protein. XVII. Purification and properties of -hydroxyacyl acyl carrier protein dehydrase. J Biol Chem. 1972 Aug 25;247(16):4930–4938. [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. D'Agnolo G., Rosenfeld I. S., Vagelos P. R. Multiple forms of beta-ketoacyl-acyl carrier protein synthetase in Escherichia coli. J Biol Chem. 1975 Jul 25;250(14):5289–5294. [PubMed] [Google Scholar]
  5. Hendren R. W., Bloch K. Fatty acid synthetases from Euglena gracilis. Separation of component activities of the ACP-dependent fatty acid synthetase and partial purification of the beta-ketoacyl-ACP synthetase. J Biol Chem. 1980 Feb 25;255(4):1504–1508. [PubMed] [Google Scholar]
  6. Jaworski J. G., Goldschmidt E. E., Stumpf P. K. Fat metabolism in higher plants. Properties of the palmityl acyl carrier protein: stearyl acyl carrier protein elongation system in maturing safflower seed extracts. Arch Biochem Biophys. 1974 Aug;163(2):769–776. doi: 10.1016/0003-9861(74)90539-6. [DOI] [PubMed] [Google Scholar]
  7. Joshi V. C., Wakil S. J. Studies on the mechanism of fatty acid synthesis. XXVI. Purification and properties of malonyl-coenzyme A--acyl carrier protein transacylase of Escherichia coli. Arch Biochem Biophys. 1971 Apr;143(2):493–505. doi: 10.1016/0003-9861(71)90234-7. [DOI] [PubMed] [Google Scholar]
  8. Kuhn D. N., Knauf M., Stumpf P. K. Subcellular localization of acetyl-CoA synthetase in leaf protoplasts of Spinacia oleracea. Arch Biochem Biophys. 1981 Jul;209(2):441–450. doi: 10.1016/0003-9861(81)90301-5. [DOI] [PubMed] [Google Scholar]
  9. Lynen F. On the structure of fatty acid synthetase of yeast. Eur J Biochem. 1980 Dec;112(3):431–442. doi: 10.1111/j.1432-1033.1980.tb06105.x. [DOI] [PubMed] [Google Scholar]
  10. Ohlrogge J. B., Kuhn D. N., Stumpf P. K. Subcellular localization of acyl carrier protein in leaf protoplasts of Spinacia oleracea. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1194–1198. doi: 10.1073/pnas.76.3.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Stoops J. K., Ross P., Arslanian M. J., Aune K. C., Wakil S. J., Oliver R. M. Physicochemical studies of the rat liver and adipose fatty acid synthetases. J Biol Chem. 1979 Aug 10;254(15):7418–7426. [PubMed] [Google Scholar]
  12. Stoops J. K., Wakil S. J. Animal fatty acid synthetase. A novel arrangement of the beta-ketoacyl synthetase sites comprising domains of the two subunits. J Biol Chem. 1981 May 25;256(10):5128–5133. [PubMed] [Google Scholar]
  13. Stoops J. K., Wakil S. J. Yeast fatty acid synthetase: structure-function relationship and nature of the beta-ketoacyl synthetase site. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4544–4548. doi: 10.1073/pnas.77.8.4544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Weaire P. J., Kekwick R. G. The fractionation of the fatty acid synthetase activities of avocado mesocarp plastids. Biochem J. 1975 Feb;146(2):439–445. doi: 10.1042/bj1460439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Weaire P. J., Kekwick R. G. The synthesis of fatty acids in avocado mesocarp and cauliflower bud tissue. Biochem J. 1975 Feb;146(2):425–437. doi: 10.1042/bj1460425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Weeks G., Wakil S. J. Studies on the mechanism of fatty acid synthesis. 18. Preparation and general properties of the enoyl acyl carrier protein reductases from Escherichia coli. J Biol Chem. 1968 Mar 25;243(6):1180–1189. [PubMed] [Google Scholar]
  17. Wood W. I., Peterson D. O., Bloch K. Subunit structure of Mycobacterium smegmatis fatty acid synthetase. Evidence for identical multifunctional polypeptide chains. J Biol Chem. 1978 Apr 25;253(8):2650–2656. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES