Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1982 Jun;69(6):1308–1314. doi: 10.1104/pp.69.6.1308

Interaction between Mitochondrial Cytochromes and Linoleic Acid Hydroperoxide

POSSIBLE CONFUSION WITH LIPOXYGENASE AND ALTERNATIVE PATHWAY

Jacques Dupont 1,1, Pierre Rustin 1, Claude Lance 1
PMCID: PMC426407  PMID: 16662392

Abstract

O2 uptake by tissue extracts in the presence of linoleic acid is generally ascribed to lipoxygenase. Such an O2 uptake can be observed not only with mitochondria of Solanum tuberosum L. and Arum maculatum L. and pure lipoxygenase but also with cytochrome c. However, the rate of oxidation is highly dependent on the procedure used to prepare the solutions of linoleic acid. Unless special care is taken to prevent contact between linoleic acid and O2, it appears that linoleic acid hydroperoxide is readily formed. This derivative can be readily oxidized by mitochondria or cytochrome c. On the other hand, the use of a rapid and specific enzymic procedure to estimate the disappearance of linoleic acid demonstrates that linoleic acid itself is not consumed at any appreciable rate by mitochondria or cytochrome c, the true substrate being linoleic acid hydroperoxide. During the reaction, the heme nucleus of added cytochrome c or of mitochondrial cytochromes undergoes deep alterations. Therefore, caution should be exerted when equating an O2 uptake observed in the presence of linoleic acid to a lipoxygenase activity. The same holds true for the similarity of reaction towards specific inhibitors between lipoxygenase and the cyanide-insensitive pathway oxidase.

Full text

PDF
1308

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BANKS A., EDDIE E., SMITH J. G. Reactions of cytochrome-c with methyl linoleate hydroperoxide. Nature. 1961 Jun 3;190:908–909. doi: 10.1038/190908a0. [DOI] [PubMed] [Google Scholar]
  2. Boudnitskaya E. V., Borisova I. G. Investigation of lipoxygenase functions in chloroplasts and mitochondria from Pisum sativum seedlings. FEBS Lett. 1972 Aug 15;24(3):359–362. doi: 10.1016/0014-5793(72)80391-0. [DOI] [PubMed] [Google Scholar]
  3. DOEG K. A., ZIEGLER D. M. Simplified methods for the estimation of iron in mitochondria and submitochondrial fractions. Arch Biochem Biophys. 1962 Apr;97:37–40. doi: 10.1016/0003-9861(62)90041-3. [DOI] [PubMed] [Google Scholar]
  4. Douce R., Christensen E. L., Bonner W. D., Jr Preparation of intaintact plant mitochondria. Biochim Biophys Acta. 1972 Aug 17;275(2):148–160. doi: 10.1016/0005-2728(72)90035-7. [DOI] [PubMed] [Google Scholar]
  5. Emken E. A. Commercial and potential utilization of lipoxygenase. J Am Oil Chem Soc. 1978 Apr;55(4):416–421. doi: 10.1007/BF02911904. [DOI] [PubMed] [Google Scholar]
  6. Galliard T., Phillips D. R. Lipoxygenase from potato tubers. Partial purification and properties of an enzyme that specifically oxygenates the 9-position of linoleic acid. Biochem J. 1971 Sep;124(2):431–438. doi: 10.1042/bj1240431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goldstein A. H., Anderson J. O., McDaniel R. G. Cyanide-insensitive and Cyanide-sensitive O(2) Uptake in Wheat: I. GRADIENT-PURIFIED MITOCHONDRIA. Plant Physiol. 1980 Sep;66(3):488–493. doi: 10.1104/pp.66.3.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Henry M. F., Nyns E. D. Cyanide-insensitive respiration. An alternative mitochondrial pathway. Subcell Biochem. 1975 Mar;4(1):1–65. [PubMed] [Google Scholar]
  9. Koch R. B., Brumfiel B. L., Brumfiel M. N. Calcium requirement for lipoxygenase catalyzed linoleate oxidation. J Am Oil Chem Soc. 1971 Oct;48(10):532–538. doi: 10.1007/BF02544556. [DOI] [PubMed] [Google Scholar]
  10. Lance C., Bonner W. D. The respiratory chain components of higher plant mitochondria. Plant Physiol. 1968 May;43(5):756–766. doi: 10.1104/pp.43.5.756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lilley R. M. Isolation of Functionally Intact Rhodoplasts from Griffithsia monilis (Ceramiaceae, Rhodophyta). Plant Physiol. 1981 Jan;67(1):5–8. doi: 10.1104/pp.67.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lilley R. M. Isolation of Functionally Intact Rhodoplasts from Griffithsia monilis (Ceramiaceae, Rhodophyta). Plant Physiol. 1981 Jan;67(1):5–8. doi: 10.1104/pp.67.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Miller M. G., Obendorf R. L. Use of Tetraethylthiuram Disulfide to Discriminate between Alternative Respiration and Lipoxygenase. Plant Physiol. 1981 May;67(5):962–964. doi: 10.1104/pp.67.5.962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Parrish D. J., Leopold A. C. Confounding of alternate respiration by lipoxygenase activity. Plant Physiol. 1978 Sep;62(3):470–472. doi: 10.1104/pp.62.3.470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rustin P., Moreau F., Lance C. Malate Oxidation in Plant Mitochondria via Malic Enzyme and the Cyanide-insensitive Electron Transport Pathway. Plant Physiol. 1980 Sep;66(3):457–462. doi: 10.1104/pp.66.3.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Siedow J. N., Girvin M. E. Alternative Respiratory Pathway: ITS ROLE IN SEED RESPIRATION AND ITS INHIBITION BY PROPYL GALLATE. Plant Physiol. 1980 Apr;65(4):669–674. doi: 10.1104/pp.65.4.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. TAPPEL A. L. The mechanism of the oxidation of unsaturated fatty acids catalyzed by hematin compounds. Arch Biochem Biophys. 1953 Jun;44(2):378–395. doi: 10.1016/0003-9861(53)90056-3. [DOI] [PubMed] [Google Scholar]
  18. TAPPEL A. L. Unsaturated lipide oxidation catalyzed by hematin compounds. J Biol Chem. 1955 Dec;217(2):721–733. [PubMed] [Google Scholar]
  19. de la Roche A. I. Increase in linolenic Acid is not a prerequisite for development of freezing tolerance in wheat. Plant Physiol. 1979 Jan;63(1):5–8. doi: 10.1104/pp.63.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES