Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1982 Jun;69(6):1365–1368. doi: 10.1104/pp.69.6.1365

Metabolism of l-Threonic Acid in Rumex x acutus L. and Pelargonium crispum (L.) L'Hér 1

Johannes P Helsper 1, Frank A Loewus 1,2
PMCID: PMC426420  PMID: 16662405

Abstract

l-Threonic acid is a natural constituent in leaves of Pelargonium crispum (L.) L'Hér (lemon geranium) and Rumex x acutus L. (sorrel). In both species, l-[14C]threonate is formed after feeding l-[U-14C]ascorbic acid to detached leaves. R. acutus leaves labeled with l-[4-3H]- or l-[6-3H]ascorbic acid produce l-[3H]threonate, in the first case internally labeled and in the second case confined to the hydroxymethyl group. These results are consistent with the formation of l-threonate from carbons three through six of l-ascorbic acid. Detached leaves of P. crispum oxidize l-[U-14C] threonate to l-[14C]tartrate whereas leaves of R. acutus produce negligible tartrate and the bulk of the 14C appears in 14CO2, [14C]sucrose, and other products of carbohydrate metabolism. R. acutus leaves that are labeled with l-[U-14C]threonate release 14CO2 at linear rate until a limiting value of 25% of the total [U-14C]threonate is metabolized. A small quantity of [14C]glycerate is also produced which suggests a process involving decarboxylation of l-[U-14C]threonate.

Full text

PDF
1365

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLOOM B. The simultaneous determination of C14 and H3 in the terminal groups of glucose. Anal Biochem. 1962 Jan;3:85–87. doi: 10.1016/0003-2697(62)90048-9. [DOI] [PubMed] [Google Scholar]
  2. HEPPEL L. A., ORTIZ P. J., OCHOA S. Small polyribonucleotides with 5'-phosphomonoester end-groups. Science. 1956 Mar 9;123(3193):415–416. doi: 10.1126/science.123.3193.415-a. [DOI] [PubMed] [Google Scholar]
  3. ISHERWOOD F. A., CHEN Y. T., MAPSON L. W. Isolation of D-glyceric acid from cress seedlings and its relationship to the synthesis of L-ascorbic acid. Biochem J. 1954 Jan;56(1):15–21. doi: 10.1042/bj0560015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. LOEWUS F. A., STAFFORD H. A. The enzymatic transfer of hydrogen by glyceric and lactic dehydrogenases. J Biol Chem. 1960 Nov;235:3317–3321. [PubMed] [Google Scholar]
  5. Loewus F. A., Wagner G., Yang J. C. Biosynthesis and metabolism of ascorbic acid in plants. Ann N Y Acad Sci. 1975 Sep 30;258:7–23. doi: 10.1111/j.1749-6632.1975.tb29265.x. [DOI] [PubMed] [Google Scholar]
  6. Nuss R. F., Loewus F. A. Further Studies on Oxalic Acid Biosynthesis in Oxalate-accumulating Plants. Plant Physiol. 1978 Apr;61(4):590–592. doi: 10.1104/pp.61.4.590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Stafford H. A., Loewus F. A. The Fixation of CO(2) into Tartaric and Malic Acids of Excised Grape Leaves. Plant Physiol. 1958 May;33(3):194–199. doi: 10.1104/pp.33.3.194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Wagner G., Loewus F. The Biosynthesis of (+)-Tartaric Acid in Pelargonium crispum. Plant Physiol. 1973 Dec;52(6):651–654. doi: 10.1104/pp.52.6.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Wagner G., Yang J. C., Loewus F. A. Stereoisomeric Characterization of Tartaric Acid Produced during l-Ascorbic Acid Metabolism in Plants. Plant Physiol. 1975 Jun;55(6):1071–1073. doi: 10.1104/pp.55.6.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. White G. A., Krupka R. M. Ascorbic acid oxidase and ascorbic acid oxygenase of Myrothecium verrucaria. Arch Biochem Biophys. 1965 Jun;110(3):448–461. doi: 10.1016/0003-9861(65)90436-4. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES