Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1972 Feb;69(2):318–322. doi: 10.1073/pnas.69.2.318

Isolation of the Insulin Receptor of Liver and Fat-Cell Membranes

Pedro Cuatrecasas 1,2
PMCID: PMC426448  PMID: 4501116

Abstract

Extraction of liver and fat-cell membranes with the nonionic detergent Triton X-100 prevents specific binding of 125I-labeled insulin to these membranes. This loss of binding to particulate material is quantitatively recovered in a high-speed (300,000 × g, 2 hr) supernatant of the extract. Specific and reversible insulin binding to soluble proteins is readily demonstrable by gel filtration. A simple and sensitive assay for detection of specific macromolecule-insulin complexes has been developed based on the selective precipitation of the complex by polyethylene glycol. Extraction of membrane lipids with organic solvents or by phospholipase digestion does not impair the subsequent extraction of the insulin-binding protein with detergent. Binding of insulin to the soluble protein is a saturable and dissociable process having a dissociation constant of about 100 nM. Derivatives of insulin compete for binding in direct proportion to their biological activity; other peptide hormones are without effect. The quantitative features of the detergent extractions and the specific insulin-binding properties of the material so obtained indicate that the protein solubilized is the biologically significant insulin receptor, whose insulin-binding function is essentially unaltered.

Keywords: detergent-solubilized, [125I]insulin, polyethylene glycol precipitation, Sephadex

Full text

PDF
318

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blatt L. M., Kim K. H. Regulation of hepatic glycogen synthetase. Stimulation of glycogen synthetase in an in vitro liver system by insulin bound to sepharose. J Biol Chem. 1971 Aug 25;246(16):4895–4898. [PubMed] [Google Scholar]
  2. Chesebro B., Svehag S. E. Precipitation of human serum proteins by polyethyleneglycol. Clin Chim Acta. 1968;20(3):527–529. doi: 10.1016/0009-8981(68)90313-6. [DOI] [PubMed] [Google Scholar]
  3. Cuatrecasas P., Desbuquois B., Krug F. Insulin-receptor interactions in liver cell membranes. Biochem Biophys Res Commun. 1971 Jul 16;44(2):333–339. doi: 10.1016/0006-291x(71)90604-8. [DOI] [PubMed] [Google Scholar]
  4. Cuatrecasas P., Illiano G. Membrane sialic acid and the mechanism of insulin action in adipose tissue cells. Effects of digestion with neuraminidase. J Biol Chem. 1971 Aug 25;246(16):4938–4946. [PubMed] [Google Scholar]
  5. Cuatrecasas P. Insulin--receptor interactions in adipose tissue cells: direct measurement and properties. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1264–1268. doi: 10.1073/pnas.68.6.1264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cuatrecasas P. Interaction of insulin with the cell membrane: the primary action of insulin. Proc Natl Acad Sci U S A. 1969 Jun;63(2):450–457. doi: 10.1073/pnas.63.2.450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cuatrecasas P. Properties of the insulin receptor of isolated fat cell membranes. J Biol Chem. 1971 Dec 10;246(23):7265–7274. [PubMed] [Google Scholar]
  8. Cuatrecasas P. Unmasking of insulin receptors in fat cells and fat cell membranes. Perturbation of membrane lipids. J Biol Chem. 1971 Nov;246(21):6532–6542. [PubMed] [Google Scholar]
  9. Desbuquois B., Aurbach G. D. Use of polyethylene glycol to separate free and antibody-bound peptide hormones in radioimmunoassays. J Clin Endocrinol Metab. 1971 Nov;33(5):732–738. doi: 10.1210/jcem-33-5-732. [DOI] [PubMed] [Google Scholar]
  10. Freychet P., Roth J., Neville D. M., Jr Monoiodoinsulin: demonstration of its biological activity and binding to fat cells and liver membranes. Biochem Biophys Res Commun. 1971 Apr 16;43(2):400–408. doi: 10.1016/0006-291x(71)90767-4. [DOI] [PubMed] [Google Scholar]
  11. Juckes I. R. Fractionation of proteins and viruses with polyethylene glycol. Biochim Biophys Acta. 1971 Mar 23;229(3):535–546. [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Leberman R. The isolation of plant viruses by means of "simple" coacervates. Virology. 1966 Nov;30(3):341–347. doi: 10.1016/0042-6822(66)90112-7. [DOI] [PubMed] [Google Scholar]
  14. Marchesi V. T., Andrews E. P. Glycoproteins: isolation from cellmembranes with lithium diiodosalicylate. Science. 1971 Dec 17;174(4015):1247–1248. doi: 10.1126/science.174.4015.1247. [DOI] [PubMed] [Google Scholar]
  15. Oka T., Topper Y. J. Insulin-sepharose and the dynamics of insulin action. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2066–2068. doi: 10.1073/pnas.68.9.2066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. POLSON A., POTGIETER G. M., LARGIER J. F., MEARS G. E., JOUBERT F. J. THE FRACTIONATION OF PROTEIN MIXTURES BY LINEAR POLYMERS OF HIGH MOLECULAR WEIGHT. Biochim Biophys Acta. 1964 Mar 16;82:463–475. doi: 10.1016/0304-4165(64)90438-6. [DOI] [PubMed] [Google Scholar]
  17. RODBELL M. METABOLISM OF ISOLATED FAT CELLS. I. EFFECTS OF HORMONES ON GLUCOSE METABOLISM AND LIPOLYSIS. J Biol Chem. 1964 Feb;239:375–380. [PubMed] [Google Scholar]
  18. Turkington R. W. Stimulation of RNA synthesis in isolated mammary cells by insulin and prolactin bound to sepharose. Biochem Biophys Res Commun. 1970 Dec 9;41(5):1362–1367. doi: 10.1016/0006-291x(70)90239-1. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES