Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1972 Feb;69(2):398–402. doi: 10.1073/pnas.69.2.398

Action of DNA Polymerase I of Escherichia coli with DNA-RNA Hybrids as Templates

John D Karkas 1, Jannis G Stavrianopoulos 1, Erwin Chargaff 1
PMCID: PMC426466  PMID: 4621833

Abstract

Experiments indicating the ability of the ribo strand of a DNA-RNA template to guide polydeoxynucleotide synthesis by highly purified DNA polymerase I of E. coli (EC 2.7.7.7) are presented. With poly(rA)·poly(dT) as template, poly(dT) is formed with a high efficiency, but almost no poly(dA). The specific activity of the enzyme, when tested with this template under suitable conditions, is eight times greater than that found for the poly(dA-dT) template. Single-stranded DNA fractions, with no template activity for DNA polymerase, are converted to efficient templates after their transcription by RNA polymerase. A concerted polymerization reaction, in which the action of DNA polymerase is dependent on that of RNA polymerase, can also be demonstrated with synthetic polydeoxynucleotides and single-stranded fractions of denatured DNA as templates.

Keywords: B. megaterium DNA, optimal conditions, high specific activity, synergistic RNA polymerase reaction

Full text

PDF
398

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brutlag D., Schekman R., Kornberg A. A possible role for RNA polymerase in the initiation of M13 DNA synthesis. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2826–2829. doi: 10.1073/pnas.68.11.2826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cassidy P. J. The synthesis of a deoxyribonucleic acid polymer of alternating base sequence from a deoxyribonucleic acid-ribonucleic acidhybrid template. J Biol Chem. 1966 May 10;241(9):2173–2175. [PubMed] [Google Scholar]
  3. Chamberlin M. J. Comparative properties of DNA, RNA, and hybrid homopolymer pairs. Fed Proc. 1965 Nov-Dec;24(6):1446–1457. [PubMed] [Google Scholar]
  4. Crippa M., Tocchini-Valentini G. P. Synthesis of amplified DNA that codes for ribosomal RNA. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2769–2773. doi: 10.1073/pnas.68.11.2769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ficq A., Brachet J. RNA-dependent DNA polymerase: possible role in the amplification of ribosomal DNA in Xenopus oocytes. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2774–2776. doi: 10.1073/pnas.68.11.2774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jovin T. M., Englund P. T., Bertsch L. L. Enzymatic synthesis of deoxyribonucleic acid. XXVI. Physical and chemical studies of a homogeneous deoxyribonucleic acid polymerase. J Biol Chem. 1969 Jun 10;244(11):2996–3008. [PubMed] [Google Scholar]
  7. Karkas J. D., Rudner R., Chargaff E. Template properties of complementary fractions of denatured microbial deoxyribonucleic acids. Proc Natl Acad Sci U S A. 1970 Apr;65(4):1049–1056. doi: 10.1073/pnas.65.4.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. RICHARDSON C. C., SCHILDKRAUT C. L., APOSHIAN H. V., KORNBERG A. ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEIC ACID. XIV. FURTHER PURIFICATION AND PROPERTIES OF DEOXYRIBONUCLEIC ACID POLYMERASE OF ESCHERICHIA COLI. J Biol Chem. 1964 Jan;239:222–232. [PubMed] [Google Scholar]
  9. Rudner R., Karkas J. D., Chargaff E. Separation of B. subtilis DNA into complementary strands, I. Biological properties. Proc Natl Acad Sci U S A. 1968 Jun;60(2):630–635. doi: 10.1073/pnas.60.2.630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rudner R., Karkas J. D., Chargaff E. Separation of microbial deoxyribonucleic acids into complementary strands. Proc Natl Acad Sci U S A. 1969 May;63(1):152–159. doi: 10.1073/pnas.63.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rudner R., Lin H. J., Hoffmann E. M., Chargaff E. Studies on the loss and the restoration of the transforming activity of the deoxyribonucleic acid of Bacillus subtilis. Biochim Biophys Acta. 1967 Nov 21;149(1):199–219. doi: 10.1016/0005-2787(67)90702-2. [DOI] [PubMed] [Google Scholar]
  12. Stavrianopoulos J. G., Karkas J. D., Chargaff E. Nucleic acid polymerases of the developing chicken embryo: a DNA polymerase preferring a hybrid template. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2207–2211. doi: 10.1073/pnas.68.9.2207. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES