Abstract
Diamination of olefins presents a powerful strategy to access vicinal diamines. During the last decade, metal-catalyzed diamination of olefins has received considerable attention. This paper describes an efficient sequential diamination and dehydrogenation process of terminal olefins with CuBr as catalyst and di-tert-butyldiaziridinone as nitrogen source, providing a facile and viable approach to a variety of imidazolin-2-ones, which are important structural motifs present in various biologically active molecules.
Keywords: diamination, dehydrogenation, diaziridinone, copper catalysts, imidazolinones
Diamination of olefins provides a straightforward approach to vicinal diamines, which are contained in a variety of biologically and chemically significant molecules.[1] A number of effective metal-mediated[2,3] and metal-catalyzed[3c,4–10] diamination processes have been reported. In our own studies, we have developed Pd(0)[11,12] and Cu(I)-catalyzed[13] diaminations of olefins using di-tert-butyldiaziridinone (1)[14] as nitrogen source. When terminal olefin 2 was used as substrate, the diamination with Pd(0) and diaziridinone 1 occurred at allylic and homoallylic carbons (Scheme 1).[12] This process likely proceeded via dehydrogenation of the terminal olefin to form diene intermediate 3, which was subsequently diaminated in situ to give product 4.[12] In our continuing efforts to explore the reactivity of diaziridinone and expand its synthetic utility, we have found that imidazolin-2-one 7 can be obtained when terminal olefin 5 was treated with di-tert-butyldiaziridinone (1) and CuBr, likely via a sequential diamination and dehydrogenation process (Scheme 1). Imidazolin-2-ones are important functional moieties present in various biologically active compounds,[15] such as dopamine D4 receptor antagonist,[15a] antibacterial MurB inhibitors,[15b] CGRP receptor antagonist,[15d] and antitumor agents[15g] (Figure 1). Imidazolin-2-ones can generally be synthesized by the cyclization of α-amino carbonyl compounds, propargylic ureas, and related compounds,[15,16] or by further derivatization of imidazolin-2-ones.[17] Herein we wish to report our preliminary studies on the Cu(I)-catalyzed sequential diamination and dehydrogenation process of terminal olefins.
Scheme 1.
Diamination of terminal olefins.
Figure 1.
Imidazolinone-containing biologically active compounds.
Our initial diamination studies were carried out with styrene (5a) as test substrate and di-tert-butyldiaziridinone (1) as nitrogen source under various conditions. As shown in Table 1, no reaction was observed in many cases (Table 1, entries 1–7). However, when styrene was treated with 10 mol% CuCl and 3.5 equiv of di-tert-butyldiaziridinone (1) in CH3CN at rt for 9 h, imidazolin-2-one 7a, instead of diamination product 6a, was formed as major product and isolated in 59% yield (Table 1, entry 8) (the X-ray structure of 7a is shown in Figure 2). The formation of 7a was somewhat unexpected. A slightly higher yield (63%) was obtained for 7a with CuBr (Table 1, entry 11), and the yield was increased to 85% via slow addition of di-tert-butyldiaziridinone (1) (Table 1, entry 12).
Table 1.
Studies on reaction conditions.[a]
| |||
|---|---|---|---|
| Entry | Catalyst | Solvent | Yield [%][b] |
| 1 | CuCl-P(nBu)3 (1:1) | CHCl3 | 0 |
| 2 | CuCl | CHCl3 | 0 |
| 3 | CuCl | CH2Cl2 | 0 |
| 4 | CuCl | ClCH2CH2Cl | 0 |
| 5 | CuCl | PhH | 0 |
| 6 | CuCl | PhCH3 | 0 |
| 7 | CuCl | THF | 0 |
| 8 | CuCl | CH3CN | 59 |
| 9 | CuI | CH3CN | 2 |
| 10 | CuCN | CH3CN | 12 |
| 11 | CuBr | CH3CN | 63 |
| 12[c] | CuBr | CH3CN | 85 |
All reactions were carried out with styrene (5a) (0.40 mmol), di-tert-butyldiaziridinone (1) (1.40 mmol) (added in one portion), and Cu(I) catalyst (0.040 mmol) in solvent (0.80 mL) at rt under argon for 9 h unless otherwise stated.
Isolated yield based on styrene.
Di-tert-butyldiaziridinone (1) was slowly added via syringe pump over 7 h, and the reaction mixture was then stirred for an additional 2 h.
Figure 2.

X-ray structure of imidazolin-2-one 7a.
The diamination–dehydrogenation process can be extended to various para-, meta-, ortho-, and disubstituted styrenes, providing the corresponding imidazolin-2-ones in 70–91% yield (Table 2, entries 2–11). Heteroarylethenes, enone, and enyne were also effective substrates, giving imidazolin-2-ones in 51–88% yield (Table 2, entries 12–15). The method is amenable to gram scale as illustrated in the case of imidazolin-2-one 7a (Table 2, entry 1). As demonstrated in Scheme 2, removal of tert-butyl group can be achieved with CF3CO2H and concentrated HCl. Treating 7a with CF3CO2H at 65 °C for 5 h resulted in selective monodeprotection to afford compound 8a in 98% yield. Both tert-butyl groups were removed in concentrated HCl at 100 °C, giving compound 9a in 87% yield.
Table 2.
CuBr-catalyzed sequential diamination and dehydrogenation of terminal olefins.[a]
| |||
|---|---|---|---|
| Entry | Substrate 5 | Product 7 | Yield [%][b] |
|
|
||
| 1[c] | 5a, X = H | 7a | 84 |
| 2 | 5b, X = p-F | 7b | 78 |
| 3 | 5c, X = p-Cl | 7c | 87 |
| 4 | 5d, X = p-Br | 7d | 85 |
| 5 | 5e, X = p-Me | 7e | 71 |
| 6 | 5f, X = p-tBu | 7f | 80 |
| 7 | 5g, X = m-Cl | 7g | 86 |
| 8 | 5h, X = o-F | 7h | 84 |
| 9 |
![]() 5i |
![]() 7i |
88 |
| 10 |
![]() 5j |
![]() 7j |
91 |
| 11 |
![]() 5k |
![]() 7k |
70 |
| 12 |
![]() 5l |
![]() 7l |
88 |
| 13 |
![]() 5m |
![]() 7m |
67 |
| 14[d] |
![]() 5n |
![]() 7n |
51 |
| 15[d] |
![]() 5o |
![]() 7o |
75 |
All reactions were carried out with olefin 5 (0.40 mmol), di-tert-butyldiaziridinone (1) (1.40 mmol) (added slowly via syringe pump over 7 h), and CuBr (0.040 mmol) in CH3CN (0.80 mL) at rt under argon for 9 h unless otherwise stated.
Isolated yield.
The reaction was carried out on 8.0 mmol scale of 5a.
Reaction time, 48 h.
Scheme 2.

Deprotection of imidazolin-2-one 7a.
When the reaction was carried out with 1.0 equiv of di-tert- butyldiaziridinone (1), diamination product 6a and imidazolin-2-one 7a were obtained from styrene (5a) in 23% and 26% yields, respectively (Scheme 3, eq 1). The structure of 6a was confirmed by the X-ray analysis (see Supporting Information). Treatment of 6a with 1.0 equiv of diaziridinone 1 and 10 mol% CuBr in CH3CN at rt led to imidazolin-2-one 7a in 72% yield (Scheme 3, eq 2). These results suggest that compound 6a is a possible reaction intermediate for 7a.
Scheme 3.

While a precise understanding of the reaction mechanism awaits further study, a plausible catalytic cycle is proposed in Scheme 4. The CuBr first reductively cleaves the N–N bond of di-tert-butyldiaziridinone (1) to form Cu(II) nitrogen radical A,[13a,f,18] which adds to terminal olefin 5 to give radical intermediate B. The ring closure of B results in compound 6 and regenerates CuBr catalyst. Compound 6 is subsequently converted into imidazolin-2-one 7 via hydrogen abstraction by radical species A with formation of urea and regeneration of CuBr catalyst.[19]
Scheme 4.

Proposed catalytic cycle.
In summary, we have developed a novel sequential diamination and dehydrogenation process of terminal olefins using CuBr as catalyst and di-tert-butyldiaziridinone (1) as nitrogen source. A variety of imidazolin-2-ones can be obtained in good yields under mild conditions. The reaction is also amenable to gram scale. The resulting imidazolin-2-ones can be selectively monodeprotected as well as completely deprotected. The present method provides ready access to imidazolin-2-ones, which are important functional motifs contained in biologically significant molecules. Further development of other reaction processes with diaziridinone and related compounds is currently underway.
Experimental Section
Representative Procedure for the Sequential Diamination and Dehydrogenation of Olefins (Table 2, entry 1)
A 50 mL single-necked flask charged with CuBr (0.1148 g, 0.80 mmol) was evacuated and filled with argon three times. After the addition of CH3CN (16 mL) and styrene (5a) (0.8332 g, 8.0 mmol), di-tert-butyldiaziridinone (1) (4.767 g, 28.0 mmol) was slowly added via syringe pump at rt over 7 h. Upon vigorously stirring at rt for an additional 2 h, the reaction mixture was concentrated and purified by flash chromatography (silica gel, petroleum ether:ethyl acetate = 20:1 to 15:1 to 10:1) to give imidazolinone 7a as a white solid (1.833 g, 84%).
Acknowledgments
We are grateful for the generous financial support from the General Medical Sciences of the National Institutes of Health (GM083944-07).
Footnotes
Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.201xxxxxx.
References
- 1.For leading reviews, see: Lucet D, Gall TL, Mioskowski C. Angew Chem. 1998;110:2724–2772.Angew Chem Int Ed. 1998;37:2580–2627. doi: 10.1002/(SICI)1521-3773(19981016)37:19<2580::AID-ANIE2580>3.0.CO;2-L.Mortensen MS, O’Doherty GA. Chemtracts: Org Chem. 2005;18:555–561.Kotti SRSS, Timmons C, Li G. Chem Biol Drug Des. 2006;67:101–114. doi: 10.1111/j.1747-0285.2006.00347.x.Kizirian JC. Chem Rev. 2008;108:140–205. doi: 10.1021/cr040107v.Lin GQ, Xu MH, Zhong YW, Sun XW. Acc Chem Res. 2008;41:831–840. doi: 10.1021/ar7002623.Jensen KH, Sigman MS. Org Biomol Chem. 2008;6:4083–4088. doi: 10.1039/b813246a.de Figueiredo RM. Angew Chem. 2009;121:1212–1215.Angew Chem Int Ed. 2009;48:1190–1193. doi: 10.1002/anie.200804362.Cardona F, Goti A. Nat Chem. 2009;1:269–275. doi: 10.1038/nchem.256.Chemler SR. J Organomet Chem. 2011;696:150–158. doi: 10.1016/j.jorganchem.2010.08.041.Jong SD, Nosal DG, Wardrop DJ. Tetrahedron. 2012;68:4067–4105. doi: 10.1016/j.tet.2012.03.036.Muñiz K, Martínez C. J Org Chem. 2013;78:2168–2174. doi: 10.1021/jo302472w.
- 2.For leading references on metal-mediated diamination, see: Tl: Aranda VG, Barluenga J, Aznar F. Synthesis. 1974:504–505.Chong AO, Oshima K, Sharpless KB. J Am Chem Soc. 1977;99:3420–3426.Muñiz K, Iesato A, Nieger M. Chem Eur J. 2003;9:5581–5596. doi: 10.1002/chem.200305011.Muñiz K, Nieger M, Mansikkamäki H. Angew Chem. 2003;115:6140–6143. doi: 10.1002/anie.200352244.Angew Chem Int Ed. 2003;42:5958–5961. doi: 10.1002/anie.200352244.Bäckvall JE. Tetrahedron Lett. 1978;19:163–166.Barluenga J, Alonso-Cires L, Asensio G. Synthesis. 1979:962–964.Kour H, Paul S, Singh PP, Gupta M, Gupta R. Tetrahedron Lett. 2013;54:761–764.Becker PN, White MA, Bergman RG. J Am Chem Soc. 1980;102:5676–5677.Fristad WE, Brandvold TA, Peterson JR, Thompson SR. J Org Chem. 1985;50:3647–3649.
- 3.For Cu(II)-promoted diamination, see: Zabawa TP, Kasi D, Chemler SR. J Am Chem Soc. 2005;127:11250–11251. doi: 10.1021/ja053335v.Zabawa TP, Chemler SR. Org Lett. 2007;9:2035–2038. doi: 10.1021/ol0706713.Sequeira FC, Turnpenny BW, Chemler SR. Angew Chem. 2010;122:6509–6512. doi: 10.1002/anie.201003499.Angew Chem Int Ed. 2010;49:6365–6368. doi: 10.1002/anie.201003499.
- 4.For metal-catalyzed diamination with TsNCl2 or TsNBr2, see: Li G, Wei HX, Kim SH, Carducci MD. Angew Chem. 2001;113:4407–4410. doi: 10.1002/1521-3773(20011119)40:22<4277::AID-ANIE4277>3.0.CO;2-I.Angew Chem Int Ed. 2001;40:4277–4280. doi: 10.1002/1521-3773(20011119)40:22<4277::AID-ANIE4277>3.0.CO;2-I.Wei HX, Siruta S, Li G. Tetrahedron Lett. 2002;43:3809–3812.Wei HX, Kim SH, Li G. J Org Chem. 2002;67:4777–4781. doi: 10.1021/jo0200769.Timmons C, Mcpherson LM, Chen D, Wei HX, Li G. J Peptide Res. 2005;66:249–254. doi: 10.1111/j.1399-3011.2005.00294.x.Han J, Li T, Pan Y, Kattuboina A, Li G. Chem Biol Drug Des. 2008;71:71–77. doi: 10.1111/j.1747-0285.2007.00604.x.
- 5.For Pd(II)-catalyzed diamination, see: Bar GLJ, Lloyd-Jones GC, Booker-Milburn KI. J Am Chem Soc. 2005;127:7308–7309. doi: 10.1021/ja051181d.Streuff J, Hövelmann CH, Nieger M, Muñiz K. J Am Chem Soc. 2005;127:14586–14587. doi: 10.1021/ja055190y.Muñiz K. J Am Chem Soc. 2007;129:14542–14543. doi: 10.1021/ja075655f.Muñiz K, Hövelmann CH, Streuff J. J Am Chem Soc. 2008;130:763–773. doi: 10.1021/ja075041a.Hövelmann CH, Streuff J, Brelot L, Muñiz K. Chem Commun. 2008:2334–2336. doi: 10.1039/b719479j.Muñiz K, Hövelmann CH, Campos-Gómez E, Barluenga J, González JM, Streuff J, Nieger M. Chem Asian J. 2008;3:776–788. doi: 10.1002/asia.200700373.Muñiz K, Streuff J, Chávez P, Hövelmann CH. Chem Asian J. 2008;3:1248–1255. doi: 10.1002/asia.200800148.Sibbald PA, Rosewall CF, Swartz RD, Michael FE. J Am Chem Soc. 2009;131:15945–15951. doi: 10.1021/ja906915w.Sibbald PA, Michael FE. Org Lett. 2009;11:1147–1149. doi: 10.1021/ol9000087.Iglesias Á, Pérez EG, Muñiz K. Angew Chem. 2010;122:8286–8288.Angew Chem Int Ed. 2010;49:8109–8111. doi: 10.1002/anie.201003653.Muñiz K, Kirsch J, Chávez P. Adv Synth Catal. 2011;353:689–694.Chávez P, Kirsch J, Streuff J, Muñiz K. J Org Chem. 2012;77:1922–1930. doi: 10.1021/jo202507d.Martínez C, Muñiz K. Angew Chem. 2012;124:7138–7141.Angew Chem Int Ed. 2012;51:7031–7034. doi: 10.1002/anie.201201719.Ingalls EL, Sibbald PA, Kaminsky W, Michael FE. J Am Chem Soc. 2013;135:8854–8856. doi: 10.1021/ja4043406.
- 6.For Ni(II)-catalyzed diamination, see: Muñiz K, Streuff J, Hövelmann CH, Núñez A. Angew Chem. 2007;119:7255–7258. doi: 10.1002/anie.200702160.Angew Chem Int Ed. 2007;46:7125–7127. doi: 10.1002/anie.200702160.Muñiz K, Hövelmann CH, Streuff J, Campos-Gómez E. Pure Appl Chem. 2008;80:1089–1096.
- 7.For Au(I)-catalyzed diamination, see: Li H, Widenhoefer RA. Org Lett. 2009;11:2671–2674. doi: 10.1021/ol900730w.Iglesias A, Muñiz K. Chem Eur J. 2009;15:10563–10569. doi: 10.1002/chem.200901199.de Haro T, Nevado C. Angew Chem. 2011;123:936–940.Angew Chem Int Ed. 2011;50:906–910. doi: 10.1002/anie.201005763.
- 8.For Cu(I) or Cu(II)-catalyzed diamination, see: Wang YF, Zhu X, Chiba S. J Am Chem Soc. 2012;134:3679–3682. doi: 10.1021/ja2120629.Zhang H, Pu W, Xiong T, Li Y, Zhou X, Sun K, Liu Q, Zhang Q. Angew Chem. 2013;125:2589–2593. doi: 10.1002/anie.201209142.Angew Chem Int Ed. 2013;52:2529–2533.Turnpenny BW, Chemler SR. Chem Sci. 2014;5:1786–1793. doi: 10.1039/C4SC00237G.
- 9.For a recent Pd(II)-catalyzed intramolecular diamination of alkynes, see: Yao B, Wang Q, Zhu J. Angew Chem. 2012;124:5260–5264.Angew Chem Int Ed. 2012;51:5170–5174. doi: 10.1002/anie.201201640.
- 10.For recent Cu(II)/Fe(III) or Cu(II)-catalyzed intermolecular diamination of alkynes, see: Zeng J, Tan YJ, Leow ML, Liu XW. Org Lett. 2012;14:4386–4389. doi: 10.1021/ol301858j.Li J, Neuville L. Org Lett. 2013;15:1752–1755. doi: 10.1021/ol400560m.
- 11.For Pd(0)-catalyzed diamination of conjugated dienes using 1, see: Du H, Zhao B, Shi Y. J Am Chem Soc. 2007;129:762–763. doi: 10.1021/ja0680562.Du H, Yuan W, Zhao B, Shi Y. J Am Chem Soc. 2007;129:11688–11689. doi: 10.1021/ja074698t.Zhao B, Du H, Cui S, Shi Y. J Am Chem Soc. 2010;132:3523–3532. doi: 10.1021/ja909459h.
- 12.For Pd(0)-catalyzed allylic and homoallylic C–H diamination of terminal olefins using 1, see: Du H, Yuan W, Zhao B, Shi Y. J Am Chem Soc. 2007;129:7496–7497. doi: 10.1021/ja072080d.Du H, Zhao B, Shi Y. J Am Chem Soc. 2008;130:8590–8591. doi: 10.1021/ja8027394.
- 13.For Cu(I)-catalyzed diamination of olefins using 1, see: Yuan W, Du H, Zhao B, Shi Y. Org Lett. 2007;9:2589–2591. doi: 10.1021/ol071105a.Du H, Zhao B, Yuan W, Shi Y. Org Lett. 2008;10:4231–4234. doi: 10.1021/ol801605w.Zhao B, Du H, Shi Y. J Org Chem. 2009;74:8392–8395. doi: 10.1021/jo901685c.Wen Y, Zhao B, Shi Y. Org Lett. 2009;11:2365–2368. doi: 10.1021/ol900808z.Zhao B, Peng X, Cui S, Shi Y. J Am Chem Soc. 2010;132:11009–11011. doi: 10.1021/ja103838d.Zhao B, Peng X, Zhu Y, Ramirez TA, Cornwall RG, Shi Y. J Am Chem Soc. 2011;133:20890–20900. doi: 10.1021/ja207691a.
- 14.For the preparation of di-tert-butyldiaziridinone (1), see: Greene FD, Stowell JC, Bergmark WR. J Org Chem. 1969;34:2254–2262.Du H, Zhao B, Shi Y. Org Synth. 2009;86:315–324.
- 15.For leading references, see: Carling RW, Moore KW, Moyes CR, Jones EA, Bonner K, Emms F, Marwood R, Patel S, Patel S, Fletcher AE, Beer M, Sohal B, Pike A, Leeson PD. J Med Chem. 1999;42:2706–2715. doi: 10.1021/jm991029k.Bronson JJ, DenBleyker KL, Falk PJ, Mate RA, Ho HT, Pucci MJ, Snyder LB. Bioorg Med Chem Lett. 2003;13:873–875. doi: 10.1016/s0960-894x(02)01076-4.Burgey CS, Stump CA, Nguyen DN, Deng JZ, Quigley AG, Norton BR, Bell IM, Mosser SD, Salvatore CA, Rutledge RZ, Kane SA, Koblan KS, Vacca JP, Graham SL, Williams TM. Bioorg Med Chem Lett. 2006;16:5052–5056. doi: 10.1016/j.bmcl.2006.07.044.Shaw AW, Paone DV, Nguyen DN, Stump CA, Burgey CS, Mosser SD, Salvatore CA, Rutledge RZ, Kane SA, Koblan KS, Graham SL, Vacca JP, Williams TM. Bioorg Med Chem Lett. 2007;17:4795–4798. doi: 10.1016/j.bmcl.2007.06.062.Congiu C, Cocco MT, Onnis V. Bioorg Med Chem Lett. 2008;18:989–993. doi: 10.1016/j.bmcl.2007.12.023.Watanabe K, Morinaka Y, Hayashi Y, Shinoda M, Nishi H, Fukushima N, Watanabe T, Ishibashi A, Yuki S, Tanaka M. Bioorg Med Chem Lett. 2008;18:1478–1483. doi: 10.1016/j.bmcl.2007.12.064.Xue N, Yang X, Wu R, Chen J, He Q, Yang B, Lu X, Hu Y. Bioorg Med Chem. 2008;16:2550–2557. doi: 10.1016/j.bmc.2007.11.048.
- 16.For leading references, see: Chawla HM, Pathak M. Tetrahedron. 1990;46:1331–1342.Markwalder JA, Pottorf RS, Seitz SP. Synlett. 1997:521–522.Akester J, Cui J, Fraenkel G. J Org Chem. 1997;62:431–434. doi: 10.1021/jo961972l.Wendeborn S, Winkler T, Foisy I. Tetrahedron Lett. 2000;41:6387–6391.Fevig JM, Pinto DJ, Han Q, Quan ML, Pruitt JR, Jacobson IC, Galemmo RA, Jr, Wang S, Orwat MJ, Bostrom LL, Knabb RM, Wong PC, Lam PYS, Wexler RR. Bioorg Med Chem Lett. 2001;11:641–645. doi: 10.1016/s0960-894x(01)00029-4.Sosa ACB, Yakushijin K, Horne DA. J Org Chem. 2002;67:4498–4500. doi: 10.1021/jo020063v.Lee SH, Clapham B, Koch G, Zimmermann J, Janda KD. Org Lett. 2003;5:511–514. doi: 10.1021/ol020244j.Lee SH, Yoshida K, Matsushita H, Clapham B, Koch G, Zimmermann J, Janda KD. J Org Chem. 2004;69:8829–8835. doi: 10.1021/jo048353u.Parcher BW, Erion DM, Dang Q. Tetrahedron Lett. 2004;45:2677–2679.Siamaki AR, Black DA, Arndtsen BA. J Org Chem. 2008;73:1135–1138. doi: 10.1021/jo701875b.Verniest G, Padwa A. Org Lett. 2008;10:4379–4382. doi: 10.1021/ol801847j.Zhao B, Du H, Shi Y. J Org Chem. 2009;74:4411–4413. doi: 10.1021/jo9004553.Peshkov VA, Pereshivko OP, Sharma S, Meganathan T, Parmar VS, Ermolat’ev DS, Van der Eycken EV. J Org Chem. 2011;76:5867–5872. doi: 10.1021/jo200789t.Proulx C, Lubell WD. Org Lett. 2012;14:4552–4555. doi: 10.1021/ol302021n.
- 17.For leading references, see: Wamhoff H, Kleimann W, Kunz G, Theis CH. Angew Chem. 1981;93:601–602.Angew Chem Int Ed Engl. 1981;20:612–613.Hirao I, Harada Y, Kimoto M, Mitsui T, Fujiwara T, Yokoyama S. J Am Chem Soc. 2004;126:13298–13305. doi: 10.1021/ja047201d.Sheppeck JE, II, Gilmore JL, Tebben A, Xue CB, Liu RQ, Decicco CP, Duan JJW. Bioorg Med Chem Lett. 2007;17:2769–2774. doi: 10.1016/j.bmcl.2007.02.076.Lu J, Tan X, Chen C. J Am Chem Soc. 2007;129:7768–7769. doi: 10.1021/ja072844p.Wang X, Wang X, Tan X, Lu J, Cormier KW, Ma Z, Chen C. J Am Chem Soc. 2012;134:18834–18842. doi: 10.1021/ja309172t.
- 18.For leading reviews on nitrogen-centered radicals, see: Danen WC, Neugebauer FA. Angew Chem. 1975;87:823–830.Angew Chem Int Ed. 1975;14:783–789.Mackiewicz P, Furstoss R. Tetrahedron. 1978;34:3241–3260.Stella L. Angew Chem. 1983;95:368–380.Angew Chem Int Ed Engl. 1983;22:337–350.Esker JL, Newcomb M. Adv Heterocycl Chem. 1993;58:1–45.Zard SZ. Chem Soc Rev. 2008;37:1603–1618. doi: 10.1039/b613443m.Minozzi M, Nanni D, Spagnolo P. Chem Eur J. 2009;15:7830–7840. doi: 10.1002/chem.200802710.
- 19.Ramirez TA, Zhao B, Shi Y. Tetrahedron Lett. 2010;51:1822–1825. doi: 10.1016/j.tetlet.2010.01.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
















