Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1972 Mar;69(3):553–557. doi: 10.1073/pnas.69.3.553

Role of Calcium and Adenosine-3′:5′-Cyclic Monophosphate in Controlling Fly Salivary Gland Secretion

William T Prince 1,2, Michael J Berridge 1,2, Howard Rasmussen 1,2,*
PMCID: PMC426505  PMID: 4335064

Abstract

The action of 5-hydroxytryptamine (5-HT) on an insect salivary gland was associated with a rise in adenosine-3′:5′-cyclic monophosphate (cAMP) concentration and an increase in calcium uptake. An increase in secretion induced either by 5-HT or exogenous cAMP required extracellular calcium. Both 5-HT and exogenous cAMP increased 45Ca efflux from previously labeled glands, but only 5-HT caused an increase in calcium uptake. The transepithelial potential in this tissue became more negative after addition of 5-HT, but more positive after addition of cAMP. 5-HT and cAMP induced a more negative potential when calcium was removed from the medium. It was concluded that both calcium and cAMP serve as intracellular messengers when 5-HT acts upon fly salivary gland.

Keywords: membrane permeability, adenylate cyclase, blowfly, protein kinases

Full text

PDF
553

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berridge M. J., Patel N. G. Insect salivary glands: stimulation of fluid secretion by 5-hydroxytryptamine and adenosine-3',5'-monophosphate. Science. 1968 Oct 25;162(3852):462–463. doi: 10.1126/science.162.3852.462. [DOI] [PubMed] [Google Scholar]
  2. Berridge M. J., Prince W. T. The electrical response of isolated salivary glands during stimulation with 5-hydroxytryptamine and cyclic AMP. Philos Trans R Soc Lond B Biol Sci. 1971 Aug 20;262(842):111–120. doi: 10.1098/rstb.1971.0082. [DOI] [PubMed] [Google Scholar]
  3. Berridge M. J. The role of 5-hydroxytryptamine and cyclic AMP in the control of fluid secretion by isolated salivary glands. J Exp Biol. 1970 Aug;53(1):171–186. doi: 10.1242/jeb.53.1.171. [DOI] [PubMed] [Google Scholar]
  4. Borle A. B. Effects of purified parathyroid hormone on the calcium metabolism of monkey kidney cells. Endocrinology. 1968 Dec;83(6):1316–1322. doi: 10.1210/endo-83-6-1316. [DOI] [PubMed] [Google Scholar]
  5. Corbin J. D., Krebs E. G. A cyclic AMP--stimulated protein kinase in adipose tissue. Biochem Biophys Res Commun. 1969 Jul 23;36(2):328–336. doi: 10.1016/0006-291x(69)90334-9. [DOI] [PubMed] [Google Scholar]
  6. Gilman A. G. A protein binding assay for adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1970 Sep;67(1):305–312. doi: 10.1073/pnas.67.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hirata M., Hayaishi O. Adenyl cyclase of Brevibacterium liquefaciens. Biochim Biophys Acta. 1967 Nov 21;149(1):1–11. doi: 10.1016/0005-2787(67)90685-5. [DOI] [PubMed] [Google Scholar]
  8. Ishikawa E., Ishikawa S., Davis J. W., Sutherland E. W. Determination of guanosine 3',5'-monophosphate in tissues and of guanyl cyclase in rat intestine. J Biol Chem. 1969 Dec 10;244(23):6371–6376. [PubMed] [Google Scholar]
  9. Krishna G., Weiss B., Brodie B. B. A simple, sensitive method for the assay of adenyl cyclase. J Pharmacol Exp Ther. 1968 Oct;163(2):379–385. [PubMed] [Google Scholar]
  10. Kuo J. F., Greengard P. Cyclic nucleotide-dependent protein kinases. IV. Widespread occurrence of adenosine 3',5'-monophosphate-dependent protein kinase in various tissues and phyla of the animal kingdom. Proc Natl Acad Sci U S A. 1969 Dec;64(4):1349–1355. doi: 10.1073/pnas.64.4.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Langslet A., Oye I. The role of cyclic 3'5'-AMP in the cardiac response to adrenaline. Eur J Pharmacol. 1970 Oct;12(2):137–144. doi: 10.1016/0014-2999(70)90058-0. [DOI] [PubMed] [Google Scholar]
  12. Nagata N., Rasmussen H. Parathyroid hormone, 3'5' AMP, Ca++, and renal gluconeogenesis. Proc Natl Acad Sci U S A. 1970 Feb;65(2):368–374. doi: 10.1073/pnas.65.2.368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Namm D. H., Mayer S. E., Maltbie M. The role of potassium and calcium ions in the effect of epinephrine on cardiac cyclic adenosine 3',5'-monophosphate, phosphorylase kinase, and phosphorylase. Mol Pharmacol. 1968 Sep;4(5):522–530. [PubMed] [Google Scholar]
  14. Ozawa E., Ebashi S. Requirement of Ca ion for the stimulating effect of cyclic 3',5'-AMP on muscle phosphorylase b kinase. J Biochem. 1967 Aug;62(2):285–286. doi: 10.1093/oxfordjournals.jbchem.a128663. [DOI] [PubMed] [Google Scholar]
  15. Rasmussen H. Cell communication, calcium ion, and cyclic adenosine monophosphate. Science. 1970 Oct 23;170(3956):404–412. doi: 10.1126/science.170.3956.404. [DOI] [PubMed] [Google Scholar]
  16. Rasmussen H. Ionic and hormonal control of calcium homeostasis. Am J Med. 1971 May;50(5):567–588. doi: 10.1016/0002-9343(71)90113-6. [DOI] [PubMed] [Google Scholar]
  17. Rasmussen H., Nagata N. Renal gluconeogenesis: effects of parathyroid hormone and dibutyryl 3',5'-AMP. Biochim Biophys Acta. 1970 Jul 21;215(1):17–28. doi: 10.1016/0304-4165(70)90383-1. [DOI] [PubMed] [Google Scholar]
  18. Rasmussen H., Tenenhouse A. Cyclic adenosine monophosphate, CA++, and membranes. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1364–1370. doi: 10.1073/pnas.59.4.1364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Robison G. A., Butcher R. W., Sutherland E. W. Cyclic AMP. Annu Rev Biochem. 1968;37:149–174. doi: 10.1146/annurev.bi.37.070168.001053. [DOI] [PubMed] [Google Scholar]
  20. Romero P. J., Whittam R. The control by internal calcium of membrane permeability to sodium and potassium. J Physiol. 1971 May;214(3):481–507. doi: 10.1113/jphysiol.1971.sp009445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rosen O. M., Rosen S. M. The effect of catecholamines on the adenyl cyclase of frog and tadpole hemolysates. Biochem Biophys Res Commun. 1968 Apr 5;31(1):82–91. doi: 10.1016/0006-291x(68)90034-x. [DOI] [PubMed] [Google Scholar]
  22. SOLTI F., REV J., MARTON I., KOLTAY E. The effect of strophanthin on the secretion of sweat. Acta Med Acad Sci Hung. 1958;12(3-4):299–304. [PubMed] [Google Scholar]
  23. SUTHERLAND E. W., OYE I., BUTCHER R. W. THE ACTION OF EPINEPHRINE AND THE ROLE OF THE ADENYL CYCLASE SYSTEM IN HORMONE ACTION. Recent Prog Horm Res. 1965;21:623–646. [PubMed] [Google Scholar]
  24. Shanfeld J., Frazer A., Hess M. E. Dissociation of the increased formation of cardiac adenosine 3',5'-monophosphate from the positive inotropic effect of norepinephrine. J Pharmacol Exp Ther. 1969 Oct;169(2):315–320. [PubMed] [Google Scholar]
  25. Sutherland E. W., Robison G. A. The role of cyclic-3',5'-AMP in responses to catecholamines and other hormones. Pharmacol Rev. 1966 Mar;18(1):145–161. [PubMed] [Google Scholar]
  26. Walsh D. A., Perkins J. P., Krebs E. G. An adenosine 3',5'-monophosphate-dependant protein kinase from rabbit skeletal muscle. J Biol Chem. 1968 Jul 10;243(13):3763–3765. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES