Abstract
Peptide bond synthesis was studied with native polyribosomes of E. coli. With the use of this system for transpeptidation, it was possible to show that a single K+ activates the ribosome monomers of polyribosomes; that protonation of a single group (probably imidazole or an N-terminal amino group) with a pKa equal to about 7.2 inactivates the transpeptidase complex; that Mn++ can substitute for Mg++, but that Ca++, spermidine, and putrescine do so only very poorly; and that the Km for puromycin in this system is about 2.4 × 10-6 M.
Keywords: peptide bond synthesis, transpeptidation, peptidyl-tRNA, Hill equation
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Choi Y. S., Carr C. W. Ion-binding studies of ribonucleic acid and Escherichia coli ribosomes. J Mol Biol. 1967 Apr 28;25(2):331–345. doi: 10.1016/0022-2836(67)90145-3. [DOI] [PubMed] [Google Scholar]
- Cundliffe E. Antibiotics and polyribosomes. II. Some effects of lincomycin, spiramycin, and streptogramin A in vivo. Biochemistry. 1969 May;8(5):2063–2066. doi: 10.1021/bi00833a042. [DOI] [PubMed] [Google Scholar]
- DIXON M. The determination of enzyme inhibitor constants. Biochem J. 1953 Aug;55(1):170–171. doi: 10.1042/bj0550170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fahnestock S., Neumann H., Shashoua V., Rich A. Ribosome-catalyzed ester formation. Biochemistry. 1970 Jun 9;9(12):2477–2483. doi: 10.1021/bi00814a013. [DOI] [PubMed] [Google Scholar]
- Godson G. N., Sinsheimer R. L. Lysis of Escherichia coli with a neutral detergent. Biochim Biophys Acta. 1967 Dec 19;149(2):476–488. doi: 10.1016/0005-2787(67)90175-x. [DOI] [PubMed] [Google Scholar]
- Goldberg A. Magnesium binding by Escherichia coli ribosomes. J Mol Biol. 1966 Feb;15(2):663–673. doi: 10.1016/s0022-2836(66)80134-1. [DOI] [PubMed] [Google Scholar]
- Hishizawa T., Pestka S. Studies on the formation of transfer ribonucleic acid-ribosome complexes. XVII. The effect of tRNA on aminoacyl-oligonucleotide binding to ribosomes. Arch Biochem Biophys. 1971 Dec;147(2):624–631. doi: 10.1016/0003-9861(71)90421-8. [DOI] [PubMed] [Google Scholar]
- LUBIN M., ENNIS H. L. ON THE ROLE OF INTRACELLULAR POTASSIUM IN PROTEIN SYNTHESIS. Biochim Biophys Acta. 1964 Apr 27;80:614–631. doi: 10.1016/0926-6550(64)90306-8. [DOI] [PubMed] [Google Scholar]
- Loftfield R. B., Eigner E. A. Molecular order of participation of inhibitors (or activators) in biological systems. Science. 1969 Apr 18;164(3877):305–308. doi: 10.1126/science.164.3877.305. [DOI] [PubMed] [Google Scholar]
- MONOD J., CHANGEUX J. P., JACOB F. Allosteric proteins and cellular control systems. J Mol Biol. 1963 Apr;6:306–329. doi: 10.1016/s0022-2836(63)80091-1. [DOI] [PubMed] [Google Scholar]
- Maden B. E., Monro R. E. Ribosome-catalyzed peptidyl transfer. Effects of cations and pH value. Eur J Biochem. 1968 Nov;6(2):309–316. doi: 10.1111/j.1432-1033.1968.tb00450.x. [DOI] [PubMed] [Google Scholar]
- Miskin R., Zamir A., Elson D. Inactivation and reactivation of ribosomal subunits: the peptidyl transferase activity of the 50 s subunit of Escherihia coli. J Mol Biol. 1970 Dec 14;54(2):355–378. doi: 10.1016/0022-2836(70)90435-3. [DOI] [PubMed] [Google Scholar]
- Miskin R., Zamir A., Elson D. The inactivation and reactivation of ribosomal-peptidyl transferase of E. coli. Biochem Biophys Res Commun. 1968 Nov 25;33(4):551–557. doi: 10.1016/0006-291x(68)90330-6. [DOI] [PubMed] [Google Scholar]
- Pestka S., Hintikka H. Studies on the formation of ribonucleic acid-ribosome complexes. XVI. Effect of ribosomal translocation inhibitors on polyribosomes. J Biol Chem. 1971 Dec 25;246(24):7723–7730. [PubMed] [Google Scholar]
- Pestka S., Hishizawa T., Lessard J. L. Studies on the formation of transfer ribonucleic acid-ribosome complexes. 8. Aminoacyl oligonucleotide binding to ribosomes: characteristics and requirements. J Biol Chem. 1970 Nov 25;245(22):6208–6219. [PubMed] [Google Scholar]
- Pestka S. Inhibitors of ribosome functions. Annu Rev Microbiol. 1971;25:487–562. doi: 10.1146/annurev.mi.25.100171.002415. [DOI] [PubMed] [Google Scholar]
- Pestka S. Studies on the formation of transfer ribonucleic acid-ribosome complexes. 8. Survey of the effect of antibiotics of N-acetyl-phenylalanyl-puromycin formation: possible mechanism of chloramphenicol action. Arch Biochem Biophys. 1970 Jan;136(1):80–88. doi: 10.1016/0003-9861(70)90329-2. [DOI] [PubMed] [Google Scholar]
- Pestka S. Studies on the formation of transfer ribonucleic acid-ribosome complexes. IX. Effect of antibiotics on translocation and peptide bond formation. Arch Biochem Biophys. 1970 Jan;136(1):89–96. doi: 10.1016/0003-9861(70)90330-9. [DOI] [PubMed] [Google Scholar]
- Scheps R., Wax R., Revel M. Reactivation in vitro of inactive ribosomes from stationary phase Escherichia coli. Biochim Biophys Acta. 1971 Feb 25;232(1):140–150. doi: 10.1016/0005-2787(71)90498-9. [DOI] [PubMed] [Google Scholar]
- Sheard B., Miall S. H., Peacocke A. R., Walker I. O., Richards R. E. Proton magnetic relaxation studies of the binding of manganese ions to Escherichia coli ribosomes. J Mol Biol. 1967 Sep 28;28(3):389–402. doi: 10.1016/s0022-2836(67)80088-3. [DOI] [PubMed] [Google Scholar]
- Weiss R. L., Morris D. R. The inality of polyamines to maintain ribosome structure and function. Biochim Biophys Acta. 1970 Apr 15;204(2):502–511. doi: 10.1016/0005-2787(70)90170-x. [DOI] [PubMed] [Google Scholar]
- Weissbach H., Redfield B., Brot N. Studies on the reaction of N-acetyl-phenylalanyl-tRNA with puromycin. Arch Biochem Biophys. 1968 Sep 20;127(1):705–710. doi: 10.1016/0003-9861(68)90280-4. [DOI] [PubMed] [Google Scholar]
- Zamir A., Miskin R., Elson D. Interconversions between inactive and active forms of ribosomal subunits. FEBS Lett. 1969 Apr;3(1):85–88. doi: 10.1016/0014-5793(69)80103-1. [DOI] [PubMed] [Google Scholar]