Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1972 Mar;69(3):636–639. doi: 10.1073/pnas.69.3.636

Regeneration and Changes in Synaptic Connections between Individual Nerve Cells in the Central Nervous System of the Leech

J K S Jansen 1,*, J G Nicholls 1
PMCID: PMC426524  PMID: 4501577

Abstract

The central nervous system of the leech has been used for the study of the formation of new synaptic connections by regenerating neurons. In control leeches, individual nerve cells in adjacent ganglia are connected in an orderly and stereotyped manner, with only little variation. In the present experiments, a bundle of axons running between two of the segmental ganglia has been severed and allowed to regenerate. Subsequently, the axons reestablish synaptic connections between certain identified nerve cells in the adjacent ganglia, selectively and accurately. Thus, individual sensory cells in one ganglion show a high degree of neural specificity in reestablishing cell to cell connections with a motor cell in the next ganglion. The performance of the regenerated synapses, however, is significantly altered in a consistent manner. The normal balance between the effects of inhibitory and excitatory innervation in leeches with regenerated synapses is different from that seen in normal leeches, with marked overemphasis on inhibition. Similar alterations have also been seen in a series of ganglia at a distance from the site of the lesion. After the operation, therefore, a widespread modification of synapses occurs along the length of the nerve cord.

Keywords: segmental ganglia, motoneurons, sensory cell

Full text

PDF
636

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baylor D. A., Nicholls J. G. Patterns of regeneration between individual nerve cells in the central nervous system of the leech. Nature. 1971 Jul 23;232(5308):268–270. doi: 10.1038/232268a0. [DOI] [PubMed] [Google Scholar]
  2. Marotte L. R., Mark R. F. The mechanism of selective reinnervation of fish eye muscle. I. Evidence from muscle function during recovery. Brain Res. 1970 Apr 1;19(1):41–51. doi: 10.1016/0006-8993(70)90235-0. [DOI] [PubMed] [Google Scholar]
  3. Nicholls J. G., Baylor D. A. Specific modalities and receptive fields of sensory neurons in CNS of the leech. J Neurophysiol. 1968 Sep;31(5):740–756. doi: 10.1152/jn.1968.31.5.740. [DOI] [PubMed] [Google Scholar]
  4. Nicholls J. G., Purves D. Monosynaptic chemical and electrical connexions between sensory and motor cells in the central nervous system of the leech. J Physiol. 1970 Aug;209(3):647–667. doi: 10.1113/jphysiol.1970.sp009184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Stuart A. E. Physiological and morphological properties of motoneurones in the central nervous system of the leech. J Physiol. 1970 Aug;209(3):627–646. doi: 10.1113/jphysiol.1970.sp009183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Wiesel T. N., Hubel D. H. Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J Neurophysiol. 1965 Nov;28(6):1029–1040. doi: 10.1152/jn.1965.28.6.1029. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES