Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1972 Mar;69(3):726–729. doi: 10.1073/pnas.69.3.726

Electromechanochemical Model of Mitochondrial Structure and Function

David E Green 1, Sungchul Ji 1
PMCID: PMC426544  PMID: 4501587

Abstract

A new model of mitochondrial structure and function is proposed on the basis of four fundamental assumptions: (a) electrons and protons are separated in the electron transfer complexes; (b) the ATPase undergoes conformational state-transitions induced by an electric field; (c) energy is transferred by an electric field effect; and (d) a conformationally strained protein system can be relaxed via a bond-forming chemical reaction. The model can explain all of the mitochondrial coupled processes and, in addition, it provides a reasonable rationalization of the correlation between mitochondrial structure and function.

Keywords: energy transduction, electric field effect, bimodal octet principle, oxidative phosphorylation, active transport

Full text

PDF
726

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRIERLEY G. P., BACHMANN E., GREEN D. E. Active transport of inorganic phosphate and magnesium ions by beef heart mitochondria. Proc Natl Acad Sci U S A. 1962 Nov 15;48:1928–1935. doi: 10.1073/pnas.48.11.1928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blondin G. A., DeCastro A. F., Senior A. E. The isolation and properties of a peptide ionophore from beef heart mitochondria. Biochem Biophys Res Commun. 1971 Apr 2;43(1):28–35. doi: 10.1016/s0006-291x(71)80080-3. [DOI] [PubMed] [Google Scholar]
  3. Green D. E., Asai J., Harris R. A., Penniston J. T. Conformational basis of energy transformations in membrane systems. 3. Configurational changes in the mitochondrial inner membrane induced by changes in functional states. Arch Biochem Biophys. 1968 May;125(2):684–705. doi: 10.1016/0003-9861(68)90626-7. [DOI] [PubMed] [Google Scholar]
  4. Green D. E., Young J. H. Energy transduction in membrane systems. Am Sci. 1971 Jan-Feb;59(1):92–100. [PubMed] [Google Scholar]
  5. Kagawa Y., Racker E. Partial resolution of the enzymes catalyzing oxidative phosphorylation. X. Correlation of morphology and function in submitochondrial particles. J Biol Chem. 1966 May 25;241(10):2475–2482. [PubMed] [Google Scholar]
  6. Packer L., Utsumi K. The relation of respiration-dependent proton transfer to mitochondrial structure. Arch Biochem Biophys. 1969 May;131(2):386–403. doi: 10.1016/0003-9861(69)90411-1. [DOI] [PubMed] [Google Scholar]
  7. Penniston J. T., Harris R. A., Asai J., Green D. E. The conformational basis of energy transformations in membrane systems. I. Conformational changes in mitochondria. Proc Natl Acad Sci U S A. 1968 Feb;59(2):624–631. doi: 10.1073/pnas.59.2.624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Rasmussen H., Chance B., Ogata E. A mechanism for the reactions of calcium with mitochondria. Proc Natl Acad Sci U S A. 1965 May;53(5):1069–1076. doi: 10.1073/pnas.53.5.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES