Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1972 Apr;69(4):834–836. doi: 10.1073/pnas.69.4.834

Stimulation of Release of Adrenal Catecholamine by Adenosine 3′:5′-Cyclic Monophosphate and Theophylline in the Absence of Extracellular Ca2+

Michael J Peach 1
PMCID: PMC426575  PMID: 4337240

Abstract

Stimulation of catecholamine release was studied in the isolated adrenal of the cat during retrograde perfusion. Theophylline, adenosine 3′:5′-cyclic monophosphate (cyclic AMP), and dibutyryl-cyclic AMP stimulated catecholamine release in adrenal chromaffin tissue; adenosine, 2′-AMP, 3′-AMP, and 5′-AMP were ineffective. Addition of theophylline for 5-15 min had no effect on catecholamine release induced by KCl or nicotine, but it significantly increased the responses to cyclic AMP and its dibutyryl derivative. Glands perfused with Ca2+-free Locke's solution for 30-180 min rapidly lost their responsiveness to KCl or nicotine. In contrast, exposure to Ca2+-free medium for 180 min had no effect on secretory responses to either the cyclic nucleotides, themselves, or to methylxanthine-induced potentiation of cyclic AMP responses. Thus, dibutyryl-cyclic AMP, cyclic AMP, and theophylline do not require extracellular Ca2+ to release adrenal catecholamines. They may act by translocating intracellular bound Ca2+ or by a mechanism independent of calcium.

Keywords: methylxanthine, cat, dibutyryl-cyclic AMP

Full text

PDF
834

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berkowitz B. A., Tarver J. H., Spector S. Release of norepinephrine in the central nervous system by theophylline and caffeine. Eur J Pharmacol. 1970 Apr;10(1):64–71. doi: 10.1016/0014-2999(70)90158-5. [DOI] [PubMed] [Google Scholar]
  2. Douglas W. W., Rubin R. P. The mechanism of catecholamine release from the adrenal medulla and the role of calcium in stimulus-secretion coupling. J Physiol. 1963 Jul;167(2):288–310. doi: 10.1113/jphysiol.1963.sp007150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Harris J. B., Alonso D. Stimulation of the gastric mucosa by adenosine-3',5'-monophosphate. Fed Proc. 1965 Nov-Dec;24(6):1368–1376. [PubMed] [Google Scholar]
  4. Lindmar R., Löffelholz K., Muscholl E. Unterschiede zwischen Tyramin und Dimethylphenylpiperzin in der Ca-Abhangigkeit und im zeitlichen Verlauf der Noradrenalin-Freisetzung am isolierten Kaninchenherzen. Experientia. 1967 Nov 15;23(11):933–934. doi: 10.1007/BF02136230. [DOI] [PubMed] [Google Scholar]
  5. Poisner A. M., Douglas W. W. The need for calcium in adrenomedullary secretion evoked by biogenic amines, polypeptides, and muscarinic agents. Proc Soc Exp Biol Med. 1966 Oct;123(1):62–64. doi: 10.3181/00379727-123-31402. [DOI] [PubMed] [Google Scholar]
  6. Robinson R. L. Stimulation of the catecholamine output of the isolated, perfused adrenal gland of the dog by angiotensin and bradykinin. J Pharmacol Exp Ther. 1967 May;156(2):252–257. [PubMed] [Google Scholar]
  7. Robinson R. L., Watts D. T. An automated trihydroxyindole procedure for the differential analysis of catecholamines. Clin Chem. 1965 Nov;11(11):986–997. [PubMed] [Google Scholar]
  8. SARCIONE E. J., BACK N., SOKAL J. E., MEHLMAN B., KNOBLOCK E. Elevation of plasma epinephrine levels produced by glucagon in vivo. Endocrinology. 1963 Apr;72:523–526. doi: 10.1210/endo-72-4-523. [DOI] [PubMed] [Google Scholar]
  9. SCIAN L. F., WESTERMANN C. D., VERDESCA A. S., HILTON J. G. Adrenocortical and medullary effects of glucagon. Am J Physiol. 1960 Nov;199:867–870. doi: 10.1152/ajplegacy.1960.199.5.867. [DOI] [PubMed] [Google Scholar]
  10. Sussman K. E., Vaughan G. D. Insulin release after ACTH, glucagon and adenosine-3'-5'-phosphate (cyclic AMP) in the perfused isolated rat pancreas. Diabetes. 1967 Jul;16(7):449–454. doi: 10.2337/diab.16.7.449. [DOI] [PubMed] [Google Scholar]
  11. Thoenen H., Huerlimann A., Haefely W. Cation dependence of the noradrenaline-releasing action of tyramine. Eur J Pharmacol. 1969 Apr;6(1):29–37. doi: 10.1016/0014-2999(69)90061-2. [DOI] [PubMed] [Google Scholar]
  12. Westfall D. P., Fleming W. W. Sensitivity changes in the dog heart to norepinephrine, calcium and aminophyline resulting from pretreatment with reserpine. J Pharmacol Exp Ther. 1968 Jan;159(1):98–106. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES