Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1972 Apr;69(4):882–884. doi: 10.1073/pnas.69.4.882

Complete Amino-Acid Sequence of Calf-Thymus Histone III

Robert J Delange 1,2, John A Hooper 1,2, Emil L Smith 1,2
PMCID: PMC426586  PMID: 4502939

Abstract

Calf-thymus histone III is a single polypeptide chain of 135 residues (combined molecular weight of 15,324) with alanine at both the amino and carboxyl ends. The NH2-terminal region (Residues 1-53) of histone III is strongly basic (net charge of +18) and contains lysines-14 and -23, which are ε-N-acetylated in a fraction of the molecules, as well as lysines-9 and -27, which are partially ε-N-methylated. The COOH-terminal region (Residues 54-135) is only slightly basic (net charge of +4), contains most of the hydrophobic residues, and has a 29-residue sequence that lacks a basic residue. The two cysteines are in the nonbasic region at positions 96 and 110. A few sequence similarities of calf-thymus histone III with other histones have been noted.

Keywords: acetyllysine, methyllysine, acetylation, methylation

Full text

PDF
882

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DeLange R. J. Egg white avidin. I. Amino acid composition; sequence of the amino- and carboxyl-terminal cyanogen bromide peptides. J Biol Chem. 1970 Mar 10;245(5):907–916. [PubMed] [Google Scholar]
  2. DeLange R. J., Fambrough D. M., Smith E. L., Bonner J. Calf and pea histone IV. 3. Complete amino acid sequence of pea seedling histone IV; comparison with the homologous calf thymus histone. J Biol Chem. 1969 Oct 25;244(20):5669–5679. [PubMed] [Google Scholar]
  3. DeLange R. J., Fambrough D. M., Smith E. L., Bonner J. Calf and pea histone IV. I. Amino acid compositions and the identical COOH-terminal 19-residue sequence. J Biol Chem. 1968 Nov 25;243(22):5906–5913. [PubMed] [Google Scholar]
  4. DeLange R. J., Fambrough D. M., Smith E. L., Bonner J. Calf and pea histone IV. II. The complete amino acid sequence of calf thymus histone IV; presence of epsilon-N-acetyllysine. J Biol Chem. 1969 Jan 25;244(2):319–334. [PubMed] [Google Scholar]
  5. DeLange R. J., Smith E. L., Bonner J. Calf thymus histone 3: sequences of the amino-and carboxyl-terminal regions and of the regions containing lysyl residues modified by acetylation and methylation. Biochem Biophys Res Commun. 1970 Aug 24;40(4):989–993. doi: 10.1016/0006-291x(70)91001-6. [DOI] [PubMed] [Google Scholar]
  6. DeLange R. J., Smith E. L. Histones: structure and function. Annu Rev Biochem. 1971;40:279–314. doi: 10.1146/annurev.bi.40.070171.001431. [DOI] [PubMed] [Google Scholar]
  7. Fambrough D. M., Bonner J. Sequence homology and role of cysteine in plant and animal arginine-rich histones. J Biol Chem. 1968 Sep 10;243(17):4434–4439. [PubMed] [Google Scholar]
  8. Greenaway P. J., Murray K. Heterogeneity and polymorphism in chicken erythrocyte histone fraction V. Nat New Biol. 1971 Feb 24;229(8):233–238. doi: 10.1038/newbio229233a0. [DOI] [PubMed] [Google Scholar]
  9. Greenaway P. J. Studies on the primary structure of chicken erythrocyte histone fraction V. Biochem J. 1971 Sep;124(2):319–325. doi: 10.1042/bj1240319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HIRS C. H. The oxidation of ribonuclease with performic acid. J Biol Chem. 1956 Apr;219(2):611–621. [PubMed] [Google Scholar]
  11. Hayashi H., Iwai K. Calf thymus alanine-rich, leucine-rich histone: sequences of the tryptic peptides and characteristic distributions of the basic and other residues in the molecule. J Biochem. 1971 Sep;70(3):543–547. doi: 10.1093/oxfordjournals.jbchem.a129670. [DOI] [PubMed] [Google Scholar]
  12. Hnilica L. S., Kappler H. A., Jordan J. J. Assymetry in the distribution of basic amino acid residues in the moderately lysine-rich histone F2b from calf thymus. Experientia. 1970 Apr 15;26(4):353–355. doi: 10.1007/BF01896882. [DOI] [PubMed] [Google Scholar]
  13. Iwai K., Ishikawa K., Hayashi H. Amino-acid sequence of slightly lysine-rich histone. Nature. 1970 Jun 13;226(5250):1056–1058. doi: 10.1038/2261056b0. [DOI] [PubMed] [Google Scholar]
  14. Johns E. W. Studies on histones. 7. Preparative methods for histone fractions from calf thymus. Biochem J. 1964 Jul;92(1):55–59. doi: 10.1042/bj0920055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Murray K. The acid extraction of histones from calf thymus deoxyribonucleoprotein. J Mol Biol. 1966 Feb;15(2):409–419. doi: 10.1016/s0022-2836(66)80116-x. [DOI] [PubMed] [Google Scholar]
  16. Ogawa Y., Quagliarotti G., Jordan J., Taylor C. W., Starbuck W. C., Busch H. Structural analysis of the glycine-rich, arginine-rich histone. 3. Sequence of the amino-terminal half of the molecule containing the modified lysine residues and the total sequence. J Biol Chem. 1969 Aug 25;244(16):4387–4392. [PubMed] [Google Scholar]
  17. Panyim S., Sommer K. R., Chalkley R. Oxidation of the cysteine-containing histone F3. Detection of an evolutionary mutation in a conservative histone. Biochemistry. 1971 Oct 12;10(21):3911–3917. doi: 10.1021/bi00797a018. [DOI] [PubMed] [Google Scholar]
  18. Rall S. C., Cole R. D. Amino acid sequence and sequence variability of the amino-terminal regions of lysine-rich histones. J Biol Chem. 1971 Dec 10;246(23):7175–7190. [PubMed] [Google Scholar]
  19. Sadgopal A., Bonner J. Proteins of interphase and metaphase chromosomes compared. Biochim Biophys Acta. 1970 Apr 28;207(1):227–239. doi: 10.1016/0005-2795(70)90154-6. [DOI] [PubMed] [Google Scholar]
  20. Sautiere P., Tyrou D., Moschetto Y., Biserte G. Structure primaire de l'histone riche en glycine et en arginine isolée de la tumeur de chloroleucémic du rat. Biochimie. 1971;53(4):479–483. doi: 10.1016/s0300-9084(71)80165-7. [DOI] [PubMed] [Google Scholar]
  21. Sautière P., Breynaert M. D., Moschetto Y., Biserte G. Séquence complète des acides aminés de l'histone riche en glycine et en arginine du thymus de porc. C R Acad Sci Hebd Seances Acad Sci D. 1970 Jul 20;271(3):364–365. [PubMed] [Google Scholar]
  22. Sung M. T., Dixon G. H. Modification of histones during spermiogenesis in trout: a molecular mechanism for altering histone binding to DNA. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1616–1623. doi: 10.1073/pnas.67.3.1616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wilson R. K., Starbuck W. C., Taylor C. W., Jordan J., Busch H. Structure of the glycine-rich, arginine-rich histone of the Novikoff hepatoma. Cancer Res. 1970 Dec;30(12):2942–2951. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES