Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1972 Apr;69(4):983–987. doi: 10.1073/pnas.69.4.983

Separation of Reticulocyte Initiation Factor M2 Activity into Two Components

David A Shafritz 1,*, Philip M Prichard 1, Jeffrey M Gilbert 1,, William C Merrick 1, W French Anderson 1
PMCID: PMC426609  PMID: 4502947

Abstract

IF-M2, one of three initiation factors isolated by DEAE-cellulose chromatography from the 0.5 M KCl-wash fraction of rabbit reticulocyte ribosomes, has been separated by Sephadex G-200 chromatography into two components: IF-M2A and IF-M2B. IF-M2A elutes near the void-volume, while IF-M2B, which is much smaller in molecular weight than IF-M2A, elutes slightly after a hemoglobin marker. In the presence of the other appropriate factors, both IF-M2A and IF-M2B are required to stimulate poly(U)-directed polyphenylalanine synthesis at low Mg++ concentration, ApUpG-directed Met-tRNAF binding to washed reticulocyte ribosomes, and initiation of globin synthesis from endogenous mRNA. IF-M2A stimulates ribosome-dependent GTP hydrolysis, while IF-M2B does not; IF-M2B stimulates ApUpG-directed fMet-tRNAF binding in the presence of IF-M1, while IF-M2A does not. Although IF-M2A and IF-M2B can be distinguished from each other by size and by activity, a distinct function for IF-M2B has not yet been found. Therefore, its precise role in the initiation process remains unclear.

Keywords: protein biosynthesis, hemoglobin, rabbit, Sephadex, liver factors

Full text

PDF
983

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ascione R., Vande Woude G. F. Ribosomal factors effecting the stimulation of cell-free protein synthesis in the prescence of foot-and-mouth disease virus ribonucleic acid. Biochem Biophys Res Commun. 1971 Oct 1;45(1):14–21. doi: 10.1016/0006-291x(71)90043-x. [DOI] [PubMed] [Google Scholar]
  2. Balkow K., Korner A. Stimulation of haemoglobin synthesis in reticulocyte lysates by initiation factors. FEBS Lett. 1971 Jan 12;12(3):157–160. doi: 10.1016/0014-5793(71)80057-1. [DOI] [PubMed] [Google Scholar]
  3. Burgess A. B., Mach B. Formation of an initiation complex with purified mammalian ribosomal subunits. Nature. 1971 Oct 13;233(5320):209–210. [PubMed] [Google Scholar]
  4. CONWAY T. W., LIPMANN F. CHARACTERIZATION OF A RIBOSOME-LINKED GUANOSINE TRIPHOSPHATASE IN ESCHERICHIA COLI EXTRACTS. Proc Natl Acad Sci U S A. 1964 Dec;52:1462–1469. doi: 10.1073/pnas.52.6.1462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chae Y. B., Mazumder R., Ochoa S. Polypeptide chain initiation in E. coli: isolation of homogeneous initiation factor E2 and its relation to ribosomal proteins. Proc Natl Acad Sci U S A. 1969 Apr;62(4):1181–1188. doi: 10.1073/pnas.62.4.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chae Y. B., Mazumder R., Ochoa S. Polypeptide chain initiation in E. coli: studies on the function of initiation factor F1. Proc Natl Acad Sci U S A. 1969 Jul;63(3):828–833. doi: 10.1073/pnas.63.3.828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cohen B. B. Cell-free protein synthesis in mixed systems with components from ascites cells and reticulocytes. Biochim Biophys Acta. 1971 Sep 30;247(1):133–140. doi: 10.1016/0005-2787(71)90816-1. [DOI] [PubMed] [Google Scholar]
  8. Crystal R. G., Anderson W. F. Initiation of hemoglobin synthesis: comparison of model reactions that use artificial templates with those using natural messenger RNA. Proc Natl Acad Sci U S A. 1972 Mar;69(3):706–711. doi: 10.1073/pnas.69.3.706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Crystal R. G., Shafritz D. A., Prichard P. M., Anderson W. F. Initial dipeptide formation in hemoglobin biosynthesis. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1810–1814. doi: 10.1073/pnas.68.8.1810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Felicetti L., Lipmann F. Comparison of amino acid polymerization factors isolated from rat liver and rabbit reticulocytes. Arch Biochem Biophys. 1968 May;125(2):548–557. doi: 10.1016/0003-9861(68)90613-9. [DOI] [PubMed] [Google Scholar]
  11. Gasior E., Rao P., Moldave K. The interaction of aminoacyl-tRNA and N-acylaminoacyl-tRNA with ribosomes and ribosomal subunits. Biochim Biophys Acta. 1971 Dec 16;254(2):331–340. doi: 10.1016/0005-2787(71)90841-0. [DOI] [PubMed] [Google Scholar]
  12. Gilbert J. M., Anderson W. F. Cell-free hemoglobin synthesis. II. Characteristics of the transfer ribonucleic acid-dependent assay system. J Biol Chem. 1970 May 10;245(9):2342–2349. [PubMed] [Google Scholar]
  13. Grummt F., Bielka H. Isolation of a protein fraction from rat liver ribosomes initiating polyphenylalanine synthesis at low Mg 2+ ions-concentrations. Eur J Biochem. 1971 Jul 29;21(2):210–216. doi: 10.1111/j.1432-1033.1971.tb01458.x. [DOI] [PubMed] [Google Scholar]
  14. Ilan J., Ilan J. Stage-specific initiation factors for protein synthesis during insect development. Dev Biol. 1971 Jun;25(2):280–292. doi: 10.1016/0012-1606(71)90031-5. [DOI] [PubMed] [Google Scholar]
  15. Kerwar S. S., Spears C., Weissbach H. Studies on the initiation of protein synthesis in animal tissues. Biochem Biophys Res Commun. 1970 Oct 9;41(1):78–84. doi: 10.1016/0006-291x(70)90471-7. [DOI] [PubMed] [Google Scholar]
  16. Kolakofsky D., Dewey K., Thach R. E. Purification and properties of initiation factor f2. Nature. 1969 Aug 16;223(5207):694–697. doi: 10.1038/223694a0. [DOI] [PubMed] [Google Scholar]
  17. Leader D. P., Klein-Bremhaar H., Wool I. G. Distribution of initiation factors in cell fractions from mammalian tissues. Biochem Biophys Res Commun. 1972 Jan 14;46(1):215–224. doi: 10.1016/0006-291x(72)90652-3. [DOI] [PubMed] [Google Scholar]
  18. Leader D. P., Wool I. G., Castles J. J. A factor for the binding of aminoacyl transfer RNA to mammalian 40S ribosomal subunits. Proc Natl Acad Sci U S A. 1970 Oct;67(2):523–528. doi: 10.1073/pnas.67.2.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lelong J. C., Grunberg-Manago M., Dondon J., Gros D., Gros F. Interaction between guanosine derivatives and factors involved in the initiation of protein synthesis. Nature. 1970 May 9;226(5245):505–510. doi: 10.1038/226505a0. [DOI] [PubMed] [Google Scholar]
  20. Means A. R., Comstock J. P., O'Malley B. W. Isolation of protein factors from oviduct polysomes which stimulate protein synthesis. Biochem Biophys Res Commun. 1971 Nov 5;45(3):759–766. doi: 10.1016/0006-291x(71)90482-7. [DOI] [PubMed] [Google Scholar]
  21. Nishizuka Y., Lipmann F. Comparison of guanosine triphosphate split and polypeptide synthesis with a purified E. coli system. Proc Natl Acad Sci U S A. 1966 Jan;55(1):212–219. doi: 10.1073/pnas.55.1.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Prichard P. M., Gilbert J. M., Shafritz D. A., Anderson W. F. Factors for the initiation of haemoglobin synthesis by rabbit reticulocyte ribosomes. Nature. 1970 May 9;226(5245):511–514. doi: 10.1038/226511a0. [DOI] [PubMed] [Google Scholar]
  23. Prichard P. M., Picciano D. J., Laycock D. G., Anderson W. F. Translation of exogenous messenger RNA for hemoglobin on reticulocyte and liver ribosomes. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2752–2756. doi: 10.1073/pnas.68.11.2752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Raeburn S., Collins J. F., Moon H. M., Maxwell E. S. Aminoacyltransferase II from rat liver. I. Purification and enzymatic properties. J Biol Chem. 1971 Feb 25;246(4):1041–1048. [PubMed] [Google Scholar]
  25. Rowley P. T., Midthun R. A., Adams M. H. Solubilization of a reticulocyte ribosomal fraction responsible for the decline in ribosomal activity with cell maturation. Arch Biochem Biophys. 1971 Jul;145(1):6–15. doi: 10.1016/0003-9861(71)90003-8. [DOI] [PubMed] [Google Scholar]
  26. Shafritz D. A., Anderson W. F. Factor dependent binding of methionyl-tRNAs to reticulocyte ribosomes. Nature. 1970 Aug 29;227(5261):918–920. doi: 10.1038/227918a0. [DOI] [PubMed] [Google Scholar]
  27. Shafritz D. A., Anderson W. F. Isolation and partial characterization of reticulocyte factors M1 and M2. J Biol Chem. 1970 Nov 10;245(21):5553–5559. [PubMed] [Google Scholar]
  28. Shafritz D. A., Laycock D. G., Anderson W. F. Puromycin-peptide bond formation with reticulocyte initiation factors M1 and M2. Proc Natl Acad Sci U S A. 1971 Feb;68(2):496–499. doi: 10.1073/pnas.68.2.496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Shafritz D. A., Laycock D. G., Crystal R. G., Anderson W. F. Requirement for GTP in the initiation process on reticulocyte ribosomes and ribosomal subunits. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2246–2251. doi: 10.1073/pnas.68.9.2246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shafritz D. A., Prichard P. M., Gilbert J. M., Anderson W. F. Separation of two factors, M1 and M2, required for poly U dependent polypeptide synthesis by rabbit reticulocyte ribosomes at low magnesium ion concentration. Biochem Biophys Res Commun. 1970 Feb 20;38(4):721–727. doi: 10.1016/0006-291x(70)90641-8. [DOI] [PubMed] [Google Scholar]
  31. Wettenhall R. E., Leader D. P., Wool I. G. Initiation factor promoted reassociation of eukaryotic ribosomal subunits. Biochem Biophys Res Commun. 1971 Jun 4;43(5):994–1000. doi: 10.1016/0006-291x(71)90560-2. [DOI] [PubMed] [Google Scholar]
  32. Woodley C. L., Chen Y. C., Bose K. K., Gupta N. K. Protein synthesis in rabbit reticulocytes: characteristics of peptide chain initiation factors. Biochem Biophys Res Commun. 1972 Jan 31;46(2):839–848. doi: 10.1016/s0006-291x(72)80217-1. [DOI] [PubMed] [Google Scholar]
  33. Zasloff M., Ochoa S. A supernatant factor involved in initiation complex formation with eukaryotic ribosomes. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3059–3063. doi: 10.1073/pnas.68.12.3059. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES