Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1972 May;69(5):1176–1180. doi: 10.1073/pnas.69.5.1176

The 3′-Terminal Nucleosides of the High Molecular Weight RNA of Avian Myeloblastosis Virus

Mary L Stephenson 1, Le Roy S Wirthlin 1, Jesse F Scott 1, Paul C Zamecnik 1
PMCID: PMC426657  PMID: 4338584

Abstract

The RNA isolated from avian myeloblastosis virus was fractionated by sucrose density gradient centrifugation. The 3′-OH terminal nucleosides of various fractions were determined by periodate oxidation followed by tritiated borohydride reduction. The 60-70S fraction and the 35S RNA derived from it by heating both have adenosine as the major terminal nucleoside, with cytidine as the next most frequent terminal. Control samples of tRNAmetf. coli and 28S ribosomal RNA from mouse ascites tumor cells gave the expected terminal residues and molecular weights.

Keywords: sucrose density centrifugation, [3H]borohydride reduction, 60-70S RNA

Full text

PDF
1176

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Attardi G., Amaldi F. Structure and synthesis of ribosomal RNA. Annu Rev Biochem. 1970;39:183–226. doi: 10.1146/annurev.bi.39.070170.001151. [DOI] [PubMed] [Google Scholar]
  2. Bader J. P., Steck T. L., Kakefuda T. The structure of the RNA of RNA-containing tumor viruses. Curr Top Microbiol Immunol. 1970;51:105–113. doi: 10.1007/978-3-642-46213-9_5. [DOI] [PubMed] [Google Scholar]
  3. Banerjee A. K., Ward R., Shatkin A. J. Cytosine at the 3'-termini of reovirus genome and in vitro mRNA. Nat New Biol. 1971 Jul 28;232(30):114–115. doi: 10.1038/newbio232114a0. [DOI] [PubMed] [Google Scholar]
  4. Bellamy A. R., Joklik W. K. Studies on the A-rich RNA of reovirus. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1389–1395. doi: 10.1073/pnas.58.4.1389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bonar R. A., Sverak L., Bolognesi D. P., Langlois A. J., Beard D., Beard J. W. Ribonucleic acid components of BAI strain A (myeloblastosis) avian tumor virus. Cancer Res. 1967 Jun;27(6):1138–1157. [PubMed] [Google Scholar]
  6. Cory S., Adams J. M., Spahr P. F., Rensing U. Sequence of 51 nucleotides at the 3'-end of R17 bacteriophage RNA. J Mol Biol. 1972 Jan 14;63(1):41–56. doi: 10.1016/0022-2836(72)90520-7. [DOI] [PubMed] [Google Scholar]
  7. Dahlberg J. E. Terminal sequences of bacteriophage RNAs. Nature. 1968 Nov 9;220(5167):548–552. doi: 10.1038/220548a0. [DOI] [PubMed] [Google Scholar]
  8. De Wachter R., Fiers W. Studies on the bacteriophage MS2. IV. The 3'-OH terminal undecanucleotide sequence of the viral RNA chain. J Mol Biol. 1967 Dec 28;30(3):507–527. [PubMed] [Google Scholar]
  9. Duesberg P. H. On the structure of RNA tumor viruses. Curr Top Microbiol Immunol. 1970;51:78–104. [PubMed] [Google Scholar]
  10. Duesberg P. H. Physical properties of Rous Sarcoma Virus RNA. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1511–1518. doi: 10.1073/pnas.60.4.1511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Duesberg P. H., Robinson W. S. Isolation of the nucleic acid of Newcastle disease virus (NDV). Proc Natl Acad Sci U S A. 1965 Sep;54(3):794–800. doi: 10.1073/pnas.54.3.794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Duesberg P. H. The RNA of influenza virus. Proc Natl Acad Sci U S A. 1968 Mar;59(3):930–937. doi: 10.1073/pnas.59.3.930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Duesberg P. H., Vogt P. K. Differences between the ribonucleic acids of transforming and nontransforming avian tumor viruses. Proc Natl Acad Sci U S A. 1970 Dec;67(4):1673–1680. doi: 10.1073/pnas.67.4.1673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Erikson E., Erikson R. L. Association of 4S ribonucleic acid with oncornavirus ribonucleic acids. J Virol. 1971 Aug;8(2):254–256. doi: 10.1128/jvi.8.2.254-256.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Erikson R. L., Erikson E., Walker T. A. The identification of the 3'-hydroxyl nucleoside terminus of avian myeloblastosis virus RNA. Virology. 1971 Aug;45(2):527–528. doi: 10.1016/0042-6822(71)90354-0. [DOI] [PubMed] [Google Scholar]
  16. Erikson R. L. Studies on the RNA from avian myeloblastosis virus. Virology. 1969 Jan;37(1):124–131. doi: 10.1016/0042-6822(69)90313-4. [DOI] [PubMed] [Google Scholar]
  17. Glitz D. G., Bradley A., Fraenkel-Contrat H. Nucleotide sequences at the 5'-linked ends of viral ribonucleic acids. Biochim Biophys Acta. 1968 Jun 18;161(1):1–12. doi: 10.1016/0005-2787(68)90288-8. [DOI] [PubMed] [Google Scholar]
  18. Glitz D. G., Eichler D. Nucleotides at the 5'-linked ends of bromegrass mosaic virus RNA and its fragments. Biochim Biophys Acta. 1971 May 13;238(2):224–232. doi: 10.1016/0005-2787(71)90089-x. [DOI] [PubMed] [Google Scholar]
  19. HECHT L. I., ZAMECNIK P. C., STEPHENSON M. L., SCOTT J. F. Nucleoside tri-phosphates as precursors of ribonucleic acid end groups in a mammalian system. J Biol Chem. 1958 Oct;233(4):954–963. [PubMed] [Google Scholar]
  20. Hatanaka M., Huebner R. J., Gilden R. V. Specificity of the DNA product of the C-type virus RNA-dependent DNA polymerase. Proc Natl Acad Sci U S A. 1971 Jan;68(1):10–12. doi: 10.1073/pnas.68.1.10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hecht L. I., Stephenson M. L., Zamecnik P. C. BINDING OF AMINO ACIDS TO THE END GROUP OF A SOLUBLE RIBONUCLEIC ACID. Proc Natl Acad Sci U S A. 1959 Apr;45(4):505–518. doi: 10.1073/pnas.45.4.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hunt J. A. Terminal-sequence studies of high-molecular-weight ribonucleic acid. The 3'-termini of rabbit reticulocyte ribosomal RNA. Biochem J. 1970 Nov;120(2):353–363. doi: 10.1042/bj1200353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Johnston R. E., Bose H. R. An adenylate-rich segment in the virion RNA of Sindbis virus. Biochem Biophys Res Commun. 1972 Jan 31;46(2):712–718. doi: 10.1016/s0006-291x(72)80198-0. [DOI] [PubMed] [Google Scholar]
  24. Jou W. M., Contreras R., Fiers W. The 3'-terminal nucleotide sequence (n = 16) of bacteriophage MS2 RNA. FEBS Lett. 1970 Aug 17;9(4):222–224. doi: 10.1016/0014-5793(70)80360-x. [DOI] [PubMed] [Google Scholar]
  25. Kamen R. Infectivity of bacteriophage R17 RNA after sequential removal of 3' terminal nucleotides. Nature. 1969 Jan 25;221(5178):321–325. doi: 10.1038/221321a0. [DOI] [PubMed] [Google Scholar]
  26. Lai M. M., Duesberg P. H. Adenylic acid-rich sequence in RNAs of Rous sarcoma virus and Rauscher mouse leukaemia virus. Nature. 1972 Feb 18;235(5338):383–386. doi: 10.1038/235383c0. [DOI] [PubMed] [Google Scholar]
  27. Lane B. G., Tamaoki T. Studies of the chain termini and alkali-stable dinucleotide sequences in 16 s and 28 s ribosomal RNA from L cells. J Mol Biol. 1967 Jul 28;27(2):335–348. doi: 10.1016/0022-2836(67)90024-1. [DOI] [PubMed] [Google Scholar]
  28. Leonard N. J., McDonald J. J., Reichmann M. E. Reaction of diethyl pyrocarbonate with nucleic acid components. I. Adenine. Proc Natl Acad Sci U S A. 1970 Sep;67(1):93–98. doi: 10.1073/pnas.67.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lewandowski L. J., Content J., Leppla S. H. Characterization of the subunit structure of the ribonucleic acid genome of influenza virus. J Virol. 1971 Nov;8(5):701–707. doi: 10.1128/jvi.8.5.701-707.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mandeles S. Base sequence at the 5'-linked terminus of tobacco mosaic virus ribonucleic acid. J Biol Chem. 1967 Jul 10;242(13):3103–3107. [PubMed] [Google Scholar]
  31. Maruyama H. B., Hatanaka M., Gilden R. V. The 3'-terminal nucleosides of the high molecular weight RNA of C-type viruses. Proc Natl Acad Sci U S A. 1971 Sep;68(9):1999–2001. doi: 10.1073/pnas.68.9.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Montagnier L., Goldé A., Vigier P. A possible subunit structure of Rous sarcoma virus RNA. J Gen Virol. 1969 Apr;4(3):449–452. doi: 10.1099/0022-1317-4-3-449. [DOI] [PubMed] [Google Scholar]
  33. Peacock A. C., Dingman C. W. Molecular weight estimation and separation of ribonucleic acid by electrophoresis in agarose-acrylamide composite gels. Biochemistry. 1968 Feb;7(2):668–674. doi: 10.1021/bi00842a023. [DOI] [PubMed] [Google Scholar]
  34. RajBhandary U. L., Stuart A., Faulkner R. D., Chang S. H., Khorana H. G. Nucleotide sequence studies on yeast phenylalanine sRNA. Cold Spring Harb Symp Quant Biol. 1966;31:425–434. doi: 10.1101/sqb.1966.031.01.055. [DOI] [PubMed] [Google Scholar]
  35. Randerath K. An evaluation of film detection methods for weak beta-emitters, particularly tritium. Anal Biochem. 1970 Mar;34:188–205. doi: 10.1016/0003-2697(70)90100-4. [DOI] [PubMed] [Google Scholar]
  36. Randerath K., Randerath E. Analysis of nucleic acid derivatives at the subnanomole level. 3. A tritium labeling procedure for quantitative analysis of ribose derivatives. Anal Biochem. 1969 Apr 4;28(1):110–118. doi: 10.1016/0003-2697(69)90162-6. [DOI] [PubMed] [Google Scholar]
  37. Randerath K., Rosenthal L. J., Zamecnik P. C. Base composition differences between avian myeloblastosis virus transfer RNA and transfer RNA isolated from host cells. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3233–3237. doi: 10.1073/pnas.68.12.3233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Robinson W. S., Pitkanen A., Rubin H. The nucleic acid of the Bryan strain of Rous sarcoma virus: purification of the virus and isolation of the nucleic acid. Proc Natl Acad Sci U S A. 1965 Jul;54(1):137–144. doi: 10.1073/pnas.54.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Solymosy F., Fedorcsák I., Gulyás A., Farkas G. L., Ehrenberg L. A new method based on the use of diethyl pyrocarbonate as a nuclease inhibitor for the extraction of undegraded nucleic acid from plant tissues. Eur J Biochem. 1968 Sep 24;5(4):520–527. doi: 10.1111/j.1432-1033.1968.tb00401.x. [DOI] [PubMed] [Google Scholar]
  40. Stavis R. L., August J. T. The biochemistry of RNA bacteriophage replication. Annu Rev Biochem. 1970;39:527–560. doi: 10.1146/annurev.bi.39.070170.002523. [DOI] [PubMed] [Google Scholar]
  41. Summers W. C. A simple method for extraction of RNA from E. coli utilizing diethyl pyrocarbonate. Anal Biochem. 1970 Feb;33(2):459–463. doi: 10.1016/0003-2697(70)90316-7. [DOI] [PubMed] [Google Scholar]
  42. WHITFELD P. R., MARKHAM R. Natural configuration of the purine nucleotides in ribonucleic acids; chemical hydrolysis of the dinucleoside phosphates. Nature. 1953 Jun 27;171(4365):1151–1152. doi: 10.1038/1711151a0. [DOI] [PubMed] [Google Scholar]
  43. Weith H. L., Gilham P. T. Polynucleotide sequence analysis by sequential base elimination: 3'-terminus of phage Q-beta RNA. Science. 1969 Nov 21;166(3908):1004–1005. doi: 10.1126/science.166.3908.1004. [DOI] [PubMed] [Google Scholar]
  44. Weith H. L., Gilham P. T. Structural analysis of polynucleotides by sequential base elimination. The sequence of the terminal decanucleotide fragment of the ribonucleic acid from bacteriophage f2. J Am Chem Soc. 1967 Oct 11;89(21):5473–5474. doi: 10.1021/ja00997a042. [DOI] [PubMed] [Google Scholar]
  45. Yot P., Pinck M., Haenni A. L., Duranton H. M., Chapeville F. Valine-specific tRNA-like structure in turnip yellow mosaic virus RNA. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1345–1352. doi: 10.1073/pnas.67.3.1345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Zamecnik P. C., Stephenson M. L., Scott J. F. PARTIAL PURIFICATION OF SOLUBLE RNA. Proc Natl Acad Sci U S A. 1960 Jun;46(6):811–822. doi: 10.1073/pnas.46.6.811. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES