Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1972 May;69(5):1188–1191. doi: 10.1073/pnas.69.5.1188

Sedimentation Properties of Yeast Chromosomal DNA

Thomas D Petes 1, Walton L Fangman 1
PMCID: PMC426660  PMID: 4556456

Abstract

Sedimentation analysis of nuclear DNA released from spheroplasts of the yeast Saccharomyces cerevisiae indicates that it has a number average molecular weight of 6.2 × 108. The chromosomal DNA molecules range in size from as small as 5 × 107 daltons to as large as 1.4 × 109 daltons. Based on these values and estimates of the total DNA content of the yeast nucleus, it is proposed that each yeast chromosome contains a single DNA duplex.

Keywords: eukaryote, high molecular weight DNA, unineme, spheroplast

Full text

PDF
1188

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURGI E., HERSHEY A. D. Sedimentation rate as a measure of molecular weight of DNA. Biophys J. 1963 Jul;3:309–321. doi: 10.1016/s0006-3495(63)86823-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. DUELL E. A., INOUE S., UTTER M. F. ISOLATION AND PROPERTIES OF INTACT MITOCHONDRIA FROM SPHEROPLASTS OF YEAST. J Bacteriol. 1964 Dec;88:1762–1773. doi: 10.1128/jb.88.6.1762-1773.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Freifelder D. Molecular weights of coliphages and coliphage DNA. IV. Molecular weights of DNA from bacteriophages T4, T5 and T7 and the general problem of determination of M. J Mol Biol. 1970 Dec 28;54(3):567–577. doi: 10.1016/0022-2836(70)90127-0. [DOI] [PubMed] [Google Scholar]
  4. Gray H. B., Jr, Hearst J. E. Flexibility of native DNA from the sedimentation behavior as a function of molecular weight and temperature. J Mol Biol. 1968 Jul 14;35(1):111–129. doi: 10.1016/s0022-2836(68)80041-5. [DOI] [PubMed] [Google Scholar]
  5. Grossman L. I., Goldring E. S., Marmur J. Preferential synthesis of yeast mitochondrial DNA in the absence of protein synthesis. J Mol Biol. 1969 Dec 28;46(3):367–376. doi: 10.1016/0022-2836(69)90182-x. [DOI] [PubMed] [Google Scholar]
  6. Hartwell L. H. Biochemical genetics of yeast. Annu Rev Genet. 1970;4:373–396. doi: 10.1146/annurev.ge.04.120170.002105. [DOI] [PubMed] [Google Scholar]
  7. Hollenberg C. P., Borst P., van Bruggen E. F. Mitochondrial DNA. V. A 25 micron closed circular duplex DNA molecule in wild-type yeast mitochondria. Stucture and genetic complexity. Biochim Biophys Acta. 1970 May 21;209(1):1–15. [PubMed] [Google Scholar]
  8. LEUCHTENBERGER C., LEUCHTENBERGER R., DAVIS A. M. A microspectrophotometric study of the desoxyribose nucleic acid (DNA) content in cells of normal and malignant human tissues. Am J Pathol. 1954 Jan-Feb;30(1):65–85. [PMC free article] [PubMed] [Google Scholar]
  9. Lehmann A. R., Ormerod M. G. Double-strand breaks in the DNA of a mammalian cell after x-irradiation. Biochim Biophys Acta. 1970 Oct 15;217(2):268–277. doi: 10.1016/0005-2787(70)90526-5. [DOI] [PubMed] [Google Scholar]
  10. Leighton S. B., Rubenstein I. Calibration of molecular weight scales for DNA. J Mol Biol. 1969 Dec 14;46(2):313–328. doi: 10.1016/0022-2836(69)90424-0. [DOI] [PubMed] [Google Scholar]
  11. van der Vliet P. C., Tonino G. J., Rozijn T. H. Studies on the yeast nucleus. 3. Properties of a deoxyribonucleoprotein complex derived from yeast. Biochim Biophys Acta. 1969 Dec 16;195(2):473–483. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES