Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1972 May;69(5):1234–1238. doi: 10.1073/pnas.69.5.1234

Formation of a Mammalian Initiation Complex with Reovirus Messenger RNA, Methionyl-tRNAF, and Ribosomal Subunits

Daniel H Levin 1, David Kyner 1, George Acs 1
PMCID: PMC426671  PMID: 4504335

Abstract

Previous data demonstrated that reovirus mRNA, synthesized in vitro with the particulate RNA transcriptase of reovirus cores, efficiently directs the synthesis of polypeptides in vitro. The present studies indicate that all of the three size classes of reovirus mRNA produced in vitro can form protein initiation complexes with rat liver [36S]Met-tRNAF and incubated 40S and 60S ribosomal subunits, which had been washed in 0.5 M KCl of mouse fibroblast L-929 cells. Mild prior treatment of the mRNA with HCHO was required to expose the initiator region. The initiation complex reacted quantitatively with puromycin to form a puromycin peptide, whose electrophoretic properties were identical to methionyl-puromycin formed in response to poly(A,G,U) or the initiator codon AUG. The complex was relatively stable and specific for [35S]Met-tRNAF; rat liver [35S]Met-tRNAM was unreactive unless the supernatant factors EF T1 and EF T2 were also present. However, the addition of fusidic acid, at a concentration that did not affect complex formation with [35S]Met-tRNAF, completely inhibited Met-tRNAM utilization. Exogenous ribosomal factors and GTP were not required unless the separated 40S and 60S subunits were further treated with 1 M KCl. The data suggest that reovirus mRNA contains AUG initiator codons that form a complex with Met-tRNAF at a puromycin-reactive site on ribosomes.

Keywords: protein initiation, binding, puromycin peptides, Met-tRNAM

Full text

PDF
1234

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhaduri S., Chatterjee N. K., Bose K. K., Gupta N. K. Initiation of protein synthesis in rabbit reticulocytes. Biochem Biophys Res Commun. 1970 Jul 27;40(2):402–407. doi: 10.1016/0006-291x(70)91023-5. [DOI] [PubMed] [Google Scholar]
  2. Billeter M. A., Dahlberg J. E., Goodman H. M., Hindley J., Weissmann C. Sequence of the first 175 nucleotides from the 5' terminus of Qbeta RNA synthesized in vitro. Nature. 1969 Dec 13;224(5224):1083–1086. doi: 10.1038/2241083a0. [DOI] [PubMed] [Google Scholar]
  3. Blobel G., Sabatini D. Dissociation of mammalian polyribosomes into subunits by puromycin. Proc Natl Acad Sci U S A. 1971 Feb;68(2):390–394. doi: 10.1073/pnas.68.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Borsa J., Graham A. F. Reovirus: RNA polymerase activity in purified virions. Biochem Biophys Res Commun. 1968 Dec 30;33(6):895–901. doi: 10.1016/0006-291x(68)90396-3. [DOI] [PubMed] [Google Scholar]
  5. Brown J. C., Smith A. E. Initiator codons in eukaryotes. Nature. 1970 May 16;226(5246):610–612. doi: 10.1038/226610a0. [DOI] [PubMed] [Google Scholar]
  6. Burgess A. B., Mach B. Formation of an initiation complex with purified mammalian ribosomal subunits. Nature. 1971 Oct 13;233(5320):209–210. [PubMed] [Google Scholar]
  7. Caskey C. T., Redfield B., Weissbach H. Formylation of guinea pig liver methionyl-sRNA. Arch Biochem Biophys. 1967 Apr;120(1):119–123. doi: 10.1016/0003-9861(67)90605-4. [DOI] [PubMed] [Google Scholar]
  8. Crystal R. G., Shafritz D. A., Prichard P. M., Anderson W. F. Initial dipeptide formation in hemoglobin biosynthesis. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1810–1814. doi: 10.1073/pnas.68.8.1810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ghosh K., Grishko A., Ghosh H. P. Initiation of protein synthesis in eukaryotes. Biochem Biophys Res Commun. 1971 Feb 5;42(3):462–468. doi: 10.1016/0006-291x(71)90393-7. [DOI] [PubMed] [Google Scholar]
  10. Gupta N. K., Chatterjee N. K., Bose K. K., Bhaduri S., Chung A. Roles of methionine transfer RNA's in protein synthesis in rabbit reticulocytes. J Mol Biol. 1970 Nov 28;54(1):145–154. doi: 10.1016/0022-2836(70)90452-3. [DOI] [PubMed] [Google Scholar]
  11. Gupta S. L., Chen J., Schaefer L., Lengyel P., Weissman S. M. Nucleotide sequence of a ribosome attachment site of bacteriophage f2 RNA. Biochem Biophys Res Commun. 1970 Jun 5;39(5):883–888. doi: 10.1016/0006-291x(70)90406-7. [DOI] [PubMed] [Google Scholar]
  12. Heywood S. M., Thompson W. C. Studies on the formation of the initiation complex in eukaryotes. Biochem Biophys Res Commun. 1971 May 7;43(3):470–475. doi: 10.1016/0006-291x(71)90637-1. [DOI] [PubMed] [Google Scholar]
  13. Hindley J., Staples D. H. Sequence of a ribosome binding site in bacteriophage Q-beta-RNA. Nature. 1969 Dec 6;224(5223):964–967. doi: 10.1038/224964a0. [DOI] [PubMed] [Google Scholar]
  14. Housman D., Jacobs-Lorena M., Rajbhandary U. L., Lodish H. F. Initiation of haemoglobin synthesis by methionyl-tRNA. Nature. 1970 Aug 29;227(5261):913–918. doi: 10.1038/227913a0. [DOI] [PubMed] [Google Scholar]
  15. Jackson R., Hunter T. Role of methionine in the initiation of haemoglobin synthesis. Nature. 1970 Aug 15;227(5259):672–676. doi: 10.1038/227672a0. [DOI] [PubMed] [Google Scholar]
  16. Kerwar S. S., Spears C., Weissbach H. Studies on the initiation of protein synthesis in animal tissues. Biochem Biophys Res Commun. 1970 Oct 9;41(1):78–84. doi: 10.1016/0006-291x(70)90471-7. [DOI] [PubMed] [Google Scholar]
  17. Leder P., Bursztyn H. Initiation of protein synthesis II. A convenient assay for the ribosome-dependent synthesis of N-formyl-C14-methionylpuromycin. Biochem Biophys Res Commun. 1966 Oct 20;25(2):233–238. doi: 10.1016/0006-291x(66)90586-9. [DOI] [PubMed] [Google Scholar]
  18. Leis J. P., Keller E. B. Protein chain initiation by methionyl-tRNA. Biochem Biophys Res Commun. 1970 Jul 27;40(2):416–421. doi: 10.1016/0006-291x(70)91025-9. [DOI] [PubMed] [Google Scholar]
  19. Levin D. H., Kyner D., Acs G. Messenger activity in mammalian cell-free extracts of reovirus single-stranded RNA prepared in vitro. Biochem Biophys Res Commun. 1971 Feb 5;42(3):454–461. doi: 10.1016/0006-291x(71)90392-5. [DOI] [PubMed] [Google Scholar]
  20. Levin D. H., Mendelsohn N., Schonberg M., Klett H., Silverstein S., Kapuler A. M., Acs G. Properties of RNA transcriptase in reovirus subviral particles. Proc Natl Acad Sci U S A. 1970 Jul;66(3):890–897. doi: 10.1073/pnas.66.3.890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ling V. Sequence at the 5'-end of bacteriophage f2 RNA. Biochem Biophys Res Commun. 1971 Jan 8;42(1):82–88. doi: 10.1016/0006-291x(71)90365-2. [DOI] [PubMed] [Google Scholar]
  22. Lodish H. F. Secondary structure of bacteriophage f2 ribonucleic acid and the initiation of in vitro protein biosynthesis. J Mol Biol. 1970 Jun 28;50(3):689–702. doi: 10.1016/0022-2836(70)90093-8. [DOI] [PubMed] [Google Scholar]
  23. Marcus A., Weeks D. P., Leis J. P., Keller E. B. Protein chain initiation by methionyl-tRNA in wheat embryo. Proc Natl Acad Sci U S A. 1970 Dec;67(4):1681–1687. doi: 10.1073/pnas.67.4.1681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. NIRENBERG M., LEDER P. RNA CODEWORDS AND PROTEIN SYNTHESIS. THE EFFECT OF TRINUCLEOTIDES UPON THE BINDING OF SRNA TO RIBOSOMES. Science. 1964 Sep 25;145(3639):1399–1407. doi: 10.1126/science.145.3639.1399. [DOI] [PubMed] [Google Scholar]
  25. Nichols J. L., Hay A. J., Joklik W. K. 5'-terminal nucleotide sequence of reovirus mRNA synthesized in vitro. Nat New Biol. 1972 Jan 26;235(56):105–107. doi: 10.1038/newbio235105a0. [DOI] [PubMed] [Google Scholar]
  26. Prichard P. M., Picciano D. J., Laycock D. G., Anderson W. F. Translation of exogenous messenger RNA for hemoglobin on reticulocyte and liver ribosomes. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2752–2756. doi: 10.1073/pnas.68.11.2752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. RajBhandary U. L., Ghosh H. P. Studies on polynucleotides. XCI. Yeast methionine transfer ribonucleic acid: purification, properties, and terminal nucleotide sequences. J Biol Chem. 1969 Mar 10;244(5):1104–1113. [PubMed] [Google Scholar]
  28. Shafritz D. A., Anderson W. F. Factor dependent binding of methionyl-tRNAs to reticulocyte ribosomes. Nature. 1970 Aug 29;227(5261):918–920. doi: 10.1038/227918a0. [DOI] [PubMed] [Google Scholar]
  29. Shafritz D. A., Laycock D. G., Anderson W. F. Puromycin-peptide bond formation with reticulocyte initiation factors M1 and M2. Proc Natl Acad Sci U S A. 1971 Feb;68(2):496–499. doi: 10.1073/pnas.68.2.496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shafritz D. A., Laycock D. G., Crystal R. G., Anderson W. F. Requirement for GTP in the initiation process on reticulocyte ribosomes and ribosomal subunits. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2246–2251. doi: 10.1073/pnas.68.9.2246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Shatkin A. J., Sipe J. D. RNA polymerase activity in purified reoviruses. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1462–1469. doi: 10.1073/pnas.61.4.1462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Skehel J. J., Joklik W. K. Studies on the in vitro transcription of reovirus RNA catalyzed by reovirus cores. Virology. 1969 Dec;39(4):822–831. doi: 10.1016/0042-6822(69)90019-1. [DOI] [PubMed] [Google Scholar]
  33. Smith A. E., Marcker K. A. Cytoplasmic methionine transfer RNAs from eukaryotes. Nature. 1970 May 16;226(5246):607–610. doi: 10.1038/226607a0. [DOI] [PubMed] [Google Scholar]
  34. Steitz J. A. Polypeptide chain initiation: nucleotide sequences of the three ribosomal binding sites in bacteriophage R17 RNA. Nature. 1969 Dec 6;224(5223):957–964. doi: 10.1038/224957a0. [DOI] [PubMed] [Google Scholar]
  35. Takeishi K., Ukita T., Nishimura S. Characterization of two species of methionine transfer ribonucleic acid from bakers' yeast. J Biol Chem. 1968 Nov 10;243(21):5761–5768. [PubMed] [Google Scholar]
  36. Tarragó A., Monasterio O., Allende J. E. Initiator-like properties of a methionyl-tRNA from wheat embryos. Biochem Biophys Res Commun. 1970 Nov 9;41(3):765–773. doi: 10.1016/0006-291x(70)90079-3. [DOI] [PubMed] [Google Scholar]
  37. Wigle D. T., Dixon G. H. Transient incorporation of methionine at the N-terminus of protamine newly synthesized in trout testis cells. Nature. 1970 Aug 15;227(5259):676–680. doi: 10.1038/227676a0. [DOI] [PubMed] [Google Scholar]
  38. Zasloff M., Ochoa S. A supernatant factor involved in initiation complex formation with eukaryotic ribosomes. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3059–3063. doi: 10.1073/pnas.68.12.3059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zweerink H. J., McDowell M. J., Joklik W. K. Essential and nonessential noncapsid reovirus proteins. Virology. 1971 Sep;45(3):716–723. doi: 10.1016/0042-6822(71)90185-1. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES