Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1972 May;69(5):1249–1252. doi: 10.1073/pnas.69.5.1249

Interaction of Eukaryote Elongation Factor EF 1 with Guanosine Nucleotides and Aminoacyl-tRNA

Hong-Mo Moon 1, Betty Redfield 1, Herbert Weissbach 1
PMCID: PMC426674  PMID: 4556458

Abstract

Evidence for two species of elongation factor 1 (EF 1A and EF 1B) from calf brain has been obtained by molecular sieve chromatography on Sephadex G-150. A high molecular weight form, EF 1A, interacts with GTP to form an EF 1A-GTP complex. GDP also reacts with EF 1, but unlike the reaction with GTP, an EF 1B-GDP complex is formed that contains a lower molecular weight and labile species of EF 1. The results also indicate that EF 1A-GTP reacts with aminoacyl-tRNA to form an aminoacyl-tRNA-EF 1B-GTP complex. These results are discussed with regard to the role of EF 1 in aminoacyl-tRNA binding to ribosomes.

Keywords: protein synthesis, aminoacyl-tRNA binding, calf brain, Sephadex G-150

Full text

PDF
1249

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beaud G., Lengyel P. Peptide chain elongation. Role of the S 1 factor in the pathway from S 3 -guanosine diphosphate complex to aminoacyl transfer ribonucleic acid-S 3 -guanosine triphosphate complex. Biochemistry. 1971 Dec 21;10(26):4899–4906. doi: 10.1021/bi00802a011. [DOI] [PubMed] [Google Scholar]
  2. Lengyel P., Söll D. Mechanism of protein biosynthesis. Bacteriol Rev. 1969 Jun;33(2):264–301. doi: 10.1128/br.33.2.264-301.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. McKeehan W. L., Hardesty B. Purification and partial characterization of the aminoacyl transfer ribonucleic acid binding enzyme from rabbit reticulocytes. J Biol Chem. 1969 Aug 25;244(16):4330–4339. [PubMed] [Google Scholar]
  4. Miller D. L., Weissbach H. Interactions between the elongation factors: the displacement of GPD from the TU-GDP complex by factor Ts. Biochem Biophys Res Commun. 1970 Mar 27;38(6):1016–1022. doi: 10.1016/0006-291x(70)90341-4. [DOI] [PubMed] [Google Scholar]
  5. Moon H. M., Weissbach H. Interaction of brain transferase I with guanosine nucleotides and aminoacyl-tRNA. Biochem Biophys Res Commun. 1972 Jan 14;46(1):254–262. doi: 10.1016/0006-291x(72)90657-2. [DOI] [PubMed] [Google Scholar]
  6. Raeburn S., Collins J. F., Moon H. M., Maxwell E. S. Aminoacyltransferase II from rat liver. I. Purification and enzymatic properties. J Biol Chem. 1971 Feb 25;246(4):1041–1048. [PubMed] [Google Scholar]
  7. Schneir M., Moldave K. The isolation and biological activity of multiple forms of aminoacyl transferase I of rat liver. Biochim Biophys Acta. 1968 Aug 23;166(1):58–67. doi: 10.1016/0005-2787(68)90490-5. [DOI] [PubMed] [Google Scholar]
  8. Weissbach H., Miller D. L., Hachmann J. Studies on the role of factor Ts in polypeptide synthesis. Arch Biochem Biophys. 1970 Mar;137(1):262–269. doi: 10.1016/0003-9861(70)90433-9. [DOI] [PubMed] [Google Scholar]
  9. Weissbach H., Redfield B., Brot N. Further studies on the role of factors Ts and Tu in protein synthesis. Arch Biochem Biophys. 1971 May;144(1):224–229. doi: 10.1016/0003-9861(71)90472-3. [DOI] [PubMed] [Google Scholar]
  10. Weissbach H., Redfield B., Hachmann J. Studies on the role of factor Ts in aminoacyl-tRNA binding to ribosomes. Arch Biochem Biophys. 1970 Nov;141(1):384–386. doi: 10.1016/0003-9861(70)90150-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES