Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1972 Jun;69(6):1375–1379. doi: 10.1073/pnas.69.6.1375

Initiation of Protein Synthesis in HeLa Cells

Nando K Chatterjee 1, S S Kerwar 1, Herbert Weissbach 1
PMCID: PMC426705  PMID: 4504345

Abstract

Initiation of protein synthesis in HeLa cells has been synchronized by exposure of the cells to fluoride. Double-labeling of such cells for short pulses with [35S]methionine and a tritiated amino acid, followed by Edman degradation of the puromycin-released nascent peptides, has shown that the percent of N-terminal methionine incorporated compared to total incorporation is significantly higher than the value obtained with any of the other amino acids tested. The results suggest that the bulk of the nascent proteins synthesized in vivo by HeLa cells are initiated with methionine.

Keywords: synchronization of initiation, Edman degradation, N-terminal amino acids

Full text

PDF
1375

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baglioni C. The role of pyrrolidone carboxylic acid in the initiation of immunoglobulin peptide chains. Biochem Biophys Res Commun. 1970 Jan 23;38(2):212–219. doi: 10.1016/0006-291x(70)90698-4. [DOI] [PubMed] [Google Scholar]
  2. Bhaduri S., Chatterjee N. K., Bose K. K., Gupta N. K. Initiation of protein synthesis in rabbit reticulocytes. Biochem Biophys Res Commun. 1970 Jul 27;40(2):402–407. doi: 10.1016/0006-291x(70)91023-5. [DOI] [PubMed] [Google Scholar]
  3. Brown J. C., Smith A. E. Initiator codons in eukaryotes. Nature. 1970 May 16;226(5246):610–612. doi: 10.1038/226610a0. [DOI] [PubMed] [Google Scholar]
  4. COLOMBO B., FELICETTI L., BAGLIONI C. INHIBITION OF PROTEIN SYNTHESIS BY CYCLOHEXIMIDE IN RABBIT RETICULOCYTES. Biochem Biophys Res Commun. 1965 Feb 3;18:389–395. doi: 10.1016/0006-291x(65)90719-9. [DOI] [PubMed] [Google Scholar]
  5. Chatterjee N. K., Bose K. K., Woodley C. L., Gupta N. K. Protein synthesis in rabbit reticulocytes: factors controlling terminal and internal methionine codon (AUG) recognition by methionyl tRNA species. Biochem Biophys Res Commun. 1971 May 21;43(4):771–779. doi: 10.1016/0006-291x(71)90683-8. [DOI] [PubMed] [Google Scholar]
  6. Colombo B., Vesco C., Baglioni C. Role of ribosomal subunits in protein synthesis in mammalian cells. Proc Natl Acad Sci U S A. 1968 Oct;61(2):651–658. doi: 10.1073/pnas.61.2.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. GRAY W. R., HARTLEY B. S. THE STRUCTURE OF A CHYMOTRYPTIC PEPTIDE FROM PSEUDOMONAS CYTOCHROME C-551. Biochem J. 1963 Nov;89:379–380. doi: 10.1042/bj0890379. [DOI] [PubMed] [Google Scholar]
  8. Ghosh K., Grishko A., Ghosh H. P. Initiation of protein synthesis in eukaryotes. Biochem Biophys Res Commun. 1971 Feb 5;42(3):462–468. doi: 10.1016/0006-291x(71)90393-7. [DOI] [PubMed] [Google Scholar]
  9. Gupta N. K., Chatterjee N. K., Bose K. K., Bhaduri S., Chung A. Roles of methionine transfer RNA's in protein synthesis in rabbit reticulocytes. J Mol Biol. 1970 Nov 28;54(1):145–154. doi: 10.1016/0022-2836(70)90452-3. [DOI] [PubMed] [Google Scholar]
  10. Housman D., Jacobs-Lorena M., Rajbhandary U. L., Lodish H. F. Initiation of haemoglobin synthesis by methionyl-tRNA. Nature. 1970 Aug 29;227(5261):913–918. doi: 10.1038/227913a0. [DOI] [PubMed] [Google Scholar]
  11. Ilan J., Ilan J. A possible role of the AUG codon in the initiation of polypeptide synthesis in a eukaryotic orgamism. Biochim Biophys Acta. 1970 Dec 14;224(2):614–619. doi: 10.1016/0005-2787(70)90594-0. [DOI] [PubMed] [Google Scholar]
  12. Jackson R., Hunter T. Role of methionine in the initiation of haemoglobin synthesis. Nature. 1970 Aug 15;227(5259):672–676. doi: 10.1038/227672a0. [DOI] [PubMed] [Google Scholar]
  13. Jones D. S., Nishimura S., Khorana H. G. Studies on polynucleotides. LVI. Further syntheses, in vitro of copolypeptides containing two amino acids in alternating sequence dependent upon DNA-like polymers containing two nucleotides in alternating sequence. J Mol Biol. 1966 Apr;16(2):454–472. doi: 10.1016/s0022-2836(66)80185-7. [DOI] [PubMed] [Google Scholar]
  14. Kerwar S. S., Spears C., Weissbach H. Studies on the initiation of protein synthesis in animal tissues. Biochem Biophys Res Commun. 1970 Oct 9;41(1):78–84. doi: 10.1016/0006-291x(70)90471-7. [DOI] [PubMed] [Google Scholar]
  15. Kerwar S. S., Weissbach H., Glenner G. G. An aminopeptidase activity associated with brain ribosomes. Arch Biochem Biophys. 1971 Mar;143(1):336–337. doi: 10.1016/0003-9861(71)90215-3. [DOI] [PubMed] [Google Scholar]
  16. Leis J. P., Keller E. B. Protein chain initiation by methionyl-tRNA. Biochem Biophys Res Commun. 1970 Jul 27;40(2):416–421. doi: 10.1016/0006-291x(70)91025-9. [DOI] [PubMed] [Google Scholar]
  17. Lengyel P., Söll D. Mechanism of protein biosynthesis. Bacteriol Rev. 1969 Jun;33(2):264–301. doi: 10.1128/br.33.2.264-301.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Liew C. C., Haslett G. W., Allfrey V. G. N-acetyl-seryl-tRNA and polypeptide chain initiation during histone biosynthesis. Nature. 1970 May 2;226(5244):414–417. doi: 10.1038/226414a0. [DOI] [PubMed] [Google Scholar]
  19. Lin S. Y., Mosteller R. D., Hardesty B. The mechanism of sodium fluoride and cycloheximide inhibition of hemoglobin biosynthesis in the cell-free reticulocyte system. J Mol Biol. 1966 Oct 28;21(1):51–69. doi: 10.1016/0022-2836(66)90079-9. [DOI] [PubMed] [Google Scholar]
  20. Lucas-Lenard J. Protein biosynthesis. Annu Rev Biochem. 1971;40:409–448. doi: 10.1146/annurev.bi.40.070171.002205. [DOI] [PubMed] [Google Scholar]
  21. Marks P. A., Burka E. R., Conconi F. M., Perl W., Rifkind R. A. Polyribosome dissociation and formation in intact reticulocytes with conservation of messenger ribonucleic acid. Proc Natl Acad Sci U S A. 1965 Jun;53(6):1437–1443. doi: 10.1073/pnas.53.6.1437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. SJOQUIST J. Determination of amino acids as phenyl thiohydantoin derivatives. III. Quantitative determination of 3-phenyl-2-thiohydantoins from paper chromatograms. Biochim Biophys Acta. 1960 Jun 17;41:20–30. doi: 10.1016/0006-3002(60)90364-4. [DOI] [PubMed] [Google Scholar]
  23. Shafritz D. A., Anderson W. F. Factor dependent binding of methionyl-tRNAs to reticulocyte ribosomes. Nature. 1970 Aug 29;227(5261):918–920. doi: 10.1038/227918a0. [DOI] [PubMed] [Google Scholar]
  24. Smith A. E., Marcker K. A. Cytoplasmic methionine transfer RNAs from eukaryotes. Nature. 1970 May 16;226(5246):607–610. doi: 10.1038/226607a0. [DOI] [PubMed] [Google Scholar]
  25. Tarragó A., Monasterio O., Allende J. E. Initiator-like properties of a methionyl-tRNA from wheat embryos. Biochem Biophys Res Commun. 1970 Nov 9;41(3):765–773. doi: 10.1016/0006-291x(70)90079-3. [DOI] [PubMed] [Google Scholar]
  26. Vesco C., Colombo B. Effect of sodium fluoride on protein synthesis in HeLa cells: inhibition of ribosome dissociation. J Mol Biol. 1970 Feb 14;47(3):335–352. doi: 10.1016/0022-2836(70)90306-2. [DOI] [PubMed] [Google Scholar]
  27. Wigle D. T., Dixon G. H. Transient incorporation of methionine at the N-terminus of protamine newly synthesized in trout testis cells. Nature. 1970 Aug 15;227(5259):676–680. doi: 10.1038/227676a0. [DOI] [PubMed] [Google Scholar]
  28. Wilson D. B., Dintzis H. Initiation of the alpha chain of rabbit hemoglobin. Cold Spring Harb Symp Quant Biol. 1969;34:313–317. doi: 10.1101/sqb.1969.034.01.038. [DOI] [PubMed] [Google Scholar]
  29. Yoshida A., Watanabe S., Morris J. Initiation of rabbit hemoglobin synthesis: methionine and formylmethionine at the N-terminal. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1600–1607. doi: 10.1073/pnas.67.3.1600. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES