Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1972 Jul;69(7):1897–1899. doi: 10.1073/pnas.69.7.1897

Ultraviolet Chromophore Transitions in the Rhodopsin Spectrum

Thomas G Ebrey 1, Barry Honig 1
PMCID: PMC426827  PMID: 4505668

Abstract

Difference spectra measured at -105° show two decreases in the ultraviolet absorption spectrum of rhodopsin upon bleaching that cannot be attributed to changes in protein conformation. These absorbancy decreases in rhodopsin are consistent with a cis-trans isomerization of the chromophore.

Keywords: cis peaks, perturbation difference spectra, retinal, Schiff bases

Full text

PDF
1897

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BROWN P. K., WALD G. The neo-b isomer of vitamin A and retinene. J Biol Chem. 1956 Oct;222(2):865–877. [PubMed] [Google Scholar]
  2. DIETERLE J. M., ROBESON C. D. Crystalline neoretinene b. Science. 1954 Aug 6;120(3110):219–220. doi: 10.1126/science.120.3110.219-a. [DOI] [PubMed] [Google Scholar]
  3. Ebrey T. G. The use of Ammonyx LO in the purification of rhodopsin and rod outer segments. Vision Res. 1971 Sep;11(9):1007–1009. doi: 10.1016/0042-6989(71)90220-3. [DOI] [PubMed] [Google Scholar]
  4. Erickson J. O., Blatz P. E. N-retinylidene-1-amino-2-propanol: a Schiff base analog for rhodopsin. Vision Res. 1968 Oct;8(10):1367–1375. doi: 10.1016/0042-6989(68)90056-4. [DOI] [PubMed] [Google Scholar]
  5. GRELLMANN K. H., LIVINGSTON R., PRATT D. A flashphotolytic investigation of rhodopsin at low temperatures. Nature. 1962 Mar 31;193:1258–1260. doi: 10.1038/1931258a0. [DOI] [PubMed] [Google Scholar]
  6. HUBBARD R., BROWN P. K., KROPF A. Vertebrate lumi- and meta-rhodopsins. Nature. 1959 Feb 14;183(4659):442–446. [PubMed] [Google Scholar]
  7. HUBBARD R., WALD G. Cis-trans isomers of vitamin A and retinene in the rhodopsin system. J Gen Physiol. 1952 Nov;36(2):269–315. doi: 10.1085/jgp.36.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Honig B., Karplus M. Implications of torsional potential of retinal isomers for visual excitation. Nature. 1971 Feb 19;229(5286):558–560. doi: 10.1038/229558a0. [DOI] [PubMed] [Google Scholar]
  9. Hubbard R., Bownds D., Yoshizawa T. The chemistry of visual photoreception. Cold Spring Harb Symp Quant Biol. 1965;30:301–315. doi: 10.1101/sqb.1965.030.01.032. [DOI] [PubMed] [Google Scholar]
  10. Hubbard R., Kropf A. THE ACTION OF LIGHT ON RHODOPSIN. Proc Natl Acad Sci U S A. 1958 Feb;44(2):130–139. doi: 10.1073/pnas.44.2.130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sperling W., Rafferty C. N. Relationship between absorption spectrum and molecular conformations of 11-cis-retinal. Nature. 1969 Nov 8;224(5219):590–594. doi: 10.1038/224591a0. [DOI] [PubMed] [Google Scholar]
  12. TAKAGI M. Studies on the ultraviolet-spectral displacements of cattle rhodopsin. Biochim Biophys Acta. 1963 May 21;66:328–340. doi: 10.1016/0006-3002(63)91202-2. [DOI] [PubMed] [Google Scholar]
  13. Wald G. Molecular basis of visual excitation. Science. 1968 Oct 11;162(3850):230–239. doi: 10.1126/science.162.3850.230. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES