Abstract
Kinetics of aromatization of 1,4-dimethylbenzene oxide (I) to 2,5-dimethylphenol (II) and 2,4-dimethylphenol (III), the latter arising by an NIH-Shift of a methyl group, as measured in the pH range 1-12, follow the equation -d[I]/dt = [I][k0 + (k[unk] + k[unk])aH], where k0 = 4.8 × 10-3 sec-1, k[unk] = 7.3 × 102 M-1 sec-1, and k[unk] = 5.3 × 102 M-1 sec-1. The ratio of products II to III at pH ≥ 6 in the spontaneous rearrangement (k0) is 13 to 87, and changes to 54 to 46 in the acid-catalyzed rearrangement (k[unk] and k[unk]). While no intermediate is detectable in the acid-catalyzed rearrangement of the arene oxide by pathway k[unk], simultaneous addition of water (and other nucleophiles) by pathway k[unk] leads, via the intermediate 1,4-dimethyl-2,5-cyclohexadiene-1,4-diol (IV), to the phenols II and III. This new mechanism for the NIH-Shift serves as a model for the ease of nucleophilic addition to other arene oxides, such as those of the polycyclic aromatic hydrocarbons recently implicated in mechanisms of carcinogenesis.
Keywords: 1,4-dimethylbenzene oxide isomerization; kinetic analysis; nonenzymatic additions; microsomal oxidation; carcinogenesis
Full text
PDF

Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ames B. N., Sims P., Grover P. L. Epoxides of carcinogenic polycyclic hydrocarbons are frameshift mutagens. Science. 1972 Apr 7;176(4030):47–49. doi: 10.1126/science.176.4030.47. [DOI] [PubMed] [Google Scholar]
- Brodie B. B., Reid W. D., Cho A. K., Sipes G., Krishna G., Gillette J. R. Possible mechanism of liver necrosis caused by aromatic organic compounds. Proc Natl Acad Sci U S A. 1971 Jan;68(1):160–164. doi: 10.1073/pnas.68.1.160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daly J., Guroff G. Production of m-methyltyrosine and p-hydroxymethylphenylalanine from p-methylphenylalanine by phenylalanine hydroxylase. Arch Biochem Biophys. 1968 Apr;125(1):136–141. doi: 10.1016/0003-9861(68)90647-4. [DOI] [PubMed] [Google Scholar]
- Grover P. L., Sims P., Huberman E., Marquardt H., Kuroki T., Heidelberger C. In vitro transformation of rodent cells by K-region derivatives of polycyclic hydrocarbons. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1098–1101. doi: 10.1073/pnas.68.6.1098. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guroff G., Daly J. W., Jerina D. M., Renson J., Witkop B., Udenfriend S. Hydroxylation-induced migration: the NIH shift. Recent experiments reveal an unexpected and general result of enzymatic hydroxylation of aromatic compounds. Science. 1967 Sep 29;157(3796):1524–1530. doi: 10.1126/science.157.3796.1524. [DOI] [PubMed] [Google Scholar]
- Jerina D. M., Daly J. W., Witkop B., Zaltzman-Nirenberg P., Udenfriend S. 1,2-naphthalene oxide as an intermediate in the microsomal hydroxylation of naphthalene. Biochemistry. 1970 Jan 6;9(1):147–156. doi: 10.1021/bi00803a019. [DOI] [PubMed] [Google Scholar]
- Jerina D. M., Kaubisch N., Daly J. W. Arene oxides as intermediates in the metabolism of aromatic substrates: alkyl and oxygen migrations during isomerization of alkylated arene oxides. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2545–2548. doi: 10.1073/pnas.68.10.2545. [DOI] [PMC free article] [PubMed] [Google Scholar]
