Abstract
The 16S RNA dissociated from 30S ribosomal subunits of Escherichia coli strains either sensitive or resistant to streptomycin contains the attachment sites for two streptomycin molecules, as does the undissociated particle from a streptomycin-sensitive strain. Since no streptomycin binds to undissociated 30S subunits from a streptomycin-resistant strain, it is suggested that protein P10, specified by the strA locus—known to be responsible for drug sensitivity—controls the availability to streptomycin of the attachment sites. These sites remain exposed in the strA+ wild-type, and become masked in strA streptomycin-resistant mutants.
The 16S RNA molecule binds streptomycin specifically; it binds two drug molecules in its native state, binds many more after its secondary structure is unfolded by melting out, and again binds two molecules after reannealing. The binding is stable to exhaustive dialysis, but it is reversed by exposure of the streptomycin-RNA complex to high-salt concentration. The complex can not be used to reconstitute functional ribosomes, but the 16S RNA reacquires this property after streptomycin elimination.
The biological significance of this stable streptomycin binding is questioned, since in strA mutants exhibiting phenotypic masking, exposure to streptomycin induces a modified 30S behavior that persists even after streptomycin has been dialyzed away, and is reversed only by exposure of the modified RNA to high-salt concentration.
Keywords: streptomycin-ribosomal binding, antibiotic, protein synthesis, 16S RNA, protein P10
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Breckenridge L., Gorini L. Genetic analysis of streptomycin resistance in Escherichia coli. Genetics. 1970 May;65(1):9–25. doi: 10.1093/genetics/65.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eikenberry E. F., Bickle T. A., Traut R. R., Price C. A. Separation of large quantities of ribosomal subunits by zonal ultracentrifugation. Eur J Biochem. 1970 Jan;12(1):113–116. doi: 10.1111/j.1432-1033.1970.tb00827.x. [DOI] [PubMed] [Google Scholar]
- Gorini L., Rosset R., Zimmermann R. A. Phenotype masking and streptomycin dependence. Science. 1967 Sep 15;157(3794):1314–1317. doi: 10.1126/science.157.3794.1314. [DOI] [PubMed] [Google Scholar]
- Kaji H., Tanaka Y. Binding of dihydrostreptomycin to ribosomal subunits. J Mol Biol. 1968 Mar 14;32(2):221–230. doi: 10.1016/0022-2836(68)90006-5. [DOI] [PubMed] [Google Scholar]
- LENNOX E. S. Transduction of linked genetic characters of the host by bacteriophage P1. Virology. 1955 Jul;1(2):190–206. doi: 10.1016/0042-6822(55)90016-7. [DOI] [PubMed] [Google Scholar]
- Lindahl T., Adams A., Fresco J. R. Renaturation of transfer ribonucleic acids through site binding of magnesium. Proc Natl Acad Sci U S A. 1966 Apr;55(4):941–948. doi: 10.1073/pnas.55.4.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Momose H., Gorini L. Genetic analysis of streptomycin dependence in Escherichia coli. Genetics. 1971 Jan;67(1):19–38. doi: 10.1093/genetics/67.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ozaki M., Mizushima S., Nomura M. Identification and functional characterization of the protein controlled by the streptomycin-resistant locus in E. coli. Nature. 1969 Apr 26;222(5191):333–339. doi: 10.1038/222333a0. [DOI] [PubMed] [Google Scholar]
- Rosset R., Gorini L. A ribosomal ambiguity mutation. J Mol Biol. 1969 Jan 14;39(1):95–112. doi: 10.1016/0022-2836(69)90336-2. [DOI] [PubMed] [Google Scholar]
- Zimmermann R. A., Garvin R. T., Gorini L. Alteration of a 30S ribosomal protein accompanying the ram mutation in Escherichia coli. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2263–2267. doi: 10.1073/pnas.68.9.2263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zimmermann R. A., Rosset R., Gorini L. Nature of phenotypic masking exhibited by drug-dependent streptomycin A mutants of Escherichia coli. J Mol Biol. 1971 May 14;57(3):403–422. doi: 10.1016/0022-2836(71)90100-8. [DOI] [PubMed] [Google Scholar]