Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1972 Aug;69(8):2198–2202. doi: 10.1073/pnas.69.8.2198

Spin-Orbital Probes of Biomolecular Structure. A Model DNA-Acridine System

William C Galley 1, Robert M Purkey 1
PMCID: PMC426899  PMID: 4340750

Abstract

Heavy atoms, such as bromine or iodine, perturb the excited-state properties of aromatic chromophores through a spin-orbital coupling mechanism. In the present work the use of specifically directed spin-orbital probes to study subtle structural relationships in biopolymers is described. Heavy atoms are introduced into defined sites in biochemical systems and the emission spectrum of a ligand or intrinsic chromophore is monitored for perturbation by the bound heavy atom. This technique is illustrated by a study of acridine dye binding to the copolymer poly(dA-BrdU). The results are interpreted in terms of an “externally” bound dye fraction whose emission is perturbed by the heavy atom in the polymer and an intercalated dye component unperturbed by bromine.

Keywords: heavy atom effect, phosphorescence, proflavin, poly(dA-BrdU)

Full text

PDF
2198

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong R. W., Kurucsev T., Strauss U. P. The interaction between acridine dyes and deoxyribonucleic acid. J Am Chem Soc. 1970 May 20;92(10):3174–3181. doi: 10.1021/ja00713a041. [DOI] [PubMed] [Google Scholar]
  2. Blake A., Peacocke A. R. The interaction of aminocridines with nucleic acids. Biopolymers. 1968;6(9):1225–1253. doi: 10.1002/bip.1968.360060902. [DOI] [PubMed] [Google Scholar]
  3. Dalgleish D. G., Peacocke A. R. The circular dichroism in the ultraviolet of aminoacridines and ethidium bromide bound to DNA. Biopolymers. 1971 Oct;10(10):1853–1863. doi: 10.1002/bip.360101008. [DOI] [PubMed] [Google Scholar]
  4. LERMAN L. S. Structural considerations in the interaction of DNA and acridines. J Mol Biol. 1961 Feb;3:18–30. doi: 10.1016/s0022-2836(61)80004-1. [DOI] [PubMed] [Google Scholar]
  5. LERMAN L. S. The structure of the DNA-acridine complex. Proc Natl Acad Sci U S A. 1963 Jan 15;49:94–102. doi: 10.1073/pnas.49.1.94. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lehrer S. S. Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry. 1971 Aug 17;10(17):3254–3263. doi: 10.1021/bi00793a015. [DOI] [PubMed] [Google Scholar]
  7. Lehrer S. S. The selective quenching of tryptophan fluorescence in proteins by iodide ion: lysozyme in the presence and absence of substrate. Biochem Biophys Res Commun. 1967 Dec 15;29(5):767–772. doi: 10.1016/0006-291x(67)90284-7. [DOI] [PubMed] [Google Scholar]
  8. Li H. J., Crothers D. M. Relaxation studies of the proflavine-DNA complex: the kinetics of an intercalation reaction. J Mol Biol. 1969 Feb 14;39(3):461–477. doi: 10.1016/0022-2836(69)90138-7. [DOI] [PubMed] [Google Scholar]
  9. Paoletti J., Le Pecq J. B. Resonance energy transfer between ethidium bromide molecules bound to nucleic acids. Does intercalation wind or unwind the DNA helix? J Mol Biol. 1971 Jul 14;59(1):43–62. doi: 10.1016/0022-2836(71)90412-8. [DOI] [PubMed] [Google Scholar]
  10. Pritchard N. J., Blake A., Peacocke A. R. Modified intercalation model for the interaction of amino acridines and DNA. Nature. 1966 Dec 17;212(5068):1360–1361. doi: 10.1038/2121360a0. [DOI] [PubMed] [Google Scholar]
  11. Purkey R. M., Galley W. C. Phosphorescence studies of environmental heterogeneity for tryptophyl residues in proteins. Biochemistry. 1970 Sep 1;9(18):3569–3575. doi: 10.1021/bi00820a010. [DOI] [PubMed] [Google Scholar]
  12. Rahn R. O., Battista M. D., Landry L. C. Influence of mercuric ions on the phosphorescence and photochemistry of DNA. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1390–1397. doi: 10.1073/pnas.67.3.1390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Riley M., Paul A. Properties of synthetic polydeoxyribonucleotide complexes containing adenine and bromouracil. Biochemistry. 1971 Oct 12;10(21):3819–3825. doi: 10.1021/bi00797a003. [DOI] [PubMed] [Google Scholar]
  14. Schmechel D. E., Crothers D. M. Kinetic and hydrodynamic studies of the complex of proflavine with poly A-poly U. Biopolymers. 1971;10(3):465–480. doi: 10.1002/bip.360100304. [DOI] [PubMed] [Google Scholar]
  15. Thomes J. C., Weill G., Daune M. Fluorescence of proflavine--DNA complexes: heterogeneity of binding sites. Biopolymers. 1969;8(5):647–669. doi: 10.1002/bip.1969.360080507. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES