Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1972 Aug;69(8):2346–2350. doi: 10.1073/pnas.69.8.2346

Control of Daughter-Cell Number Variation in Multiple Fission: Genetic versus Environmental Determinants in Prototheca

Robert O Poyton 1,*, Daniel Branton 1
PMCID: PMC426931  PMID: 4506103

Abstract

Prototheca zopfii has been developed as an experimental system for studying the control of cytokinesis and daughter-cell number variation in multiple fission. Although mean daughter-cell number increases linearly with growth rate, and this dependency is genetically controlled, pedigree analysis shows that daughter-cell number variation is not under direct genetic control. In a population growing in steady-state balanced growth, each cell has a given probability of dividing into 2, 4, 8 16, or 32 daughter-cells. These probabilities are independent of the division number of the cell in the preceding generation, and can be altered by changes in the culture medium.

Keywords: cell division, growth rate effects, colorless alga, Chlorella

Full text

PDF
2346

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CAMPBELL A. Synchronization of cell division. Bacteriol Rev. 1957 Dec;21(4):263–272. doi: 10.1128/br.21.4.263-272.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Harvey R. J., Marr A. G., Painter P. R. Kinetics of growth of individual cells of Escherichia coli and Azotobacter agilis. J Bacteriol. 1967 Feb;93(2):605–617. doi: 10.1128/jb.93.2.605-617.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Kates J. R., Chiang K. S., Jones R. F. Studies on DNA replication during synchronized vegetative growth and gametic differentiation in Chlamydomonas reinhardtii. Exp Cell Res. 1968 Jan;49(1):121–135. doi: 10.1016/0014-4827(68)90525-9. [DOI] [PubMed] [Google Scholar]
  4. Molloy G. R., Schmidt R. R. Studies on the regulation of ribulose-1,5-diphosphate carboxylase synthesis during the cell cycle ofthe eucaryote chlorella. Biochem Biophys Res Commun. 1970 Sep 10;40(5):1125–1133. doi: 10.1016/0006-291x(70)90911-3. [DOI] [PubMed] [Google Scholar]
  5. Poyton R. O., Branton D. A multipurpose microperfusion chamber. Exp Cell Res. 1970 Apr;60(1):109–114. doi: 10.1016/0014-4827(70)90494-5. [DOI] [PubMed] [Google Scholar]
  6. SCHAECHTER M., MAALOE O., KJELDGAARD N. O. Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. J Gen Microbiol. 1958 Dec;19(3):592–606. doi: 10.1099/00221287-19-3-592. [DOI] [PubMed] [Google Scholar]
  7. SOEDER C. J., RIED A. [On the course of sporulation and protoplast division in synchronous cultures of Chlorella pyrenoidosa]. Arch Mikrobiol. 1962;42:176–189. [PubMed] [Google Scholar]
  8. Schor S., Siekevitz P., Palade G. E. Cyclic Changes in Thylakoid Membranes of Synchronized Chlamydomonas reinhardi. Proc Natl Acad Sci U S A. 1970 May;66(1):174–180. doi: 10.1073/pnas.66.1.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Sitz T. O., Kent A. B., Hopkins H. A., Schmidt R. R. Equilibrium density-gradient procedure for selection of synchronous cells from asynchronous cultures. Science. 1970 Jun 5;168(3936):1231–1232. doi: 10.1126/science.168.3936.1231. [DOI] [PubMed] [Google Scholar]
  10. Wanka F., Mulders P. F. The effect of light on DNA synthesis and related processes in synchronous cultures of chlorella. Arch Mikrobiol. 1967;58(3):257–269. doi: 10.1007/BF00408808. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES