Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1972 Sep;69(9):2509–2512. doi: 10.1073/pnas.69.9.2509

The Gradient-Sensing Mechanism in Bacterial Chemotaxis

Robert M Macnab 1, D E Koshland Jr 1
PMCID: PMC426976  PMID: 4560688

Abstract

A “temporal gradient apparatus” has been developed that allows the motility of bacteria to be studied after they have been subjected to a sudden change from one uniform concentration of attractant to another. A sudden decrease elicits the tumbling response observed with spatial gradients; it was found, however, that a sudden increase also elicits a response, namely supercoordinated swimming. This demonstrates that chemotaxis is achieved by modulation of the incidence of tumbling both above and below its steady-state value. The initial responses gradually revert to the steady-state motility pattern characteristic of a uniform distribution of attractant. The apparent detection of a spatial gradient by the bacteria therefore involves an actual detection of a temporal gradient experienced as a result of movement through space. Potential models for the chemotactic response based on some “memory” mechanism are discussed.

Keywords: temporal gradient apparatus, stopped-flow, S. typhimurium, motility tracks, memory

Full text

PDF
2509

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler J. Chemoreceptors in bacteria. Science. 1969 Dec 26;166(3913):1588–1597. doi: 10.1126/science.166.3913.1588. [DOI] [PubMed] [Google Scholar]
  2. Armstrong J. B., Adler J., Dahl M. M. Nonchemotactic mutants of Escherichia coli. J Bacteriol. 1967 Jan;93(1):390–398. doi: 10.1128/jb.93.1.390-398.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CLAYTON R. K. Studies in the phototaxis of Rhodospirillum rubrum. III. Quantitative relations between stimulus and response. Arch Mikrobiol. 1953;19(2):141–165. doi: 10.1007/BF00446397. [DOI] [PubMed] [Google Scholar]
  4. Dahlquist F. W., Lovely P., Koshland D. E., Jr Quantitative analysis of bacterial migration in chemotaxis. Nat New Biol. 1972 Mar 29;236(65):120–123. doi: 10.1038/newbio236120a0. [DOI] [PubMed] [Google Scholar]
  5. Delbrück M. Signal transducers: terra incognita of molecular biology. Angew Chem Int Ed Engl. 1972 Jan;11(1):1–6. doi: 10.1002/anie.197200011. [DOI] [PubMed] [Google Scholar]
  6. HARRIS H. Chemotaxis of granulocytes. J Pathol Bacteriol. 1953 Jul;66(1):135–146. doi: 10.1002/path.1700660117. [DOI] [PubMed] [Google Scholar]
  7. Hazelbauer G. L., Adler J. Role of the galactose binding protein in chemotaxis of Escherichia coli toward galactose. Nat New Biol. 1971 Mar 24;230(12):101–104. doi: 10.1038/newbio230101a0. [DOI] [PubMed] [Google Scholar]
  8. Kalckar H. M. The periplasmic galactose binding protein of Escherichia coli. Science. 1971 Nov 5;174(4009):557–565. doi: 10.1126/science.174.4009.557. [DOI] [PubMed] [Google Scholar]
  9. Keller E. F., Segel L. A. Model for chemotaxis. J Theor Biol. 1971 Feb;30(2):225–234. doi: 10.1016/0022-5193(71)90050-6. [DOI] [PubMed] [Google Scholar]
  10. Naito Y., Kaneko H. Reactivated triton-extracted models o paramecium: modification of ciliary movement by calcium ions. Science. 1972 May 5;176(4034):523–524. doi: 10.1126/science.176.4034.523. [DOI] [PubMed] [Google Scholar]
  11. VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES