Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1972 Sep;69(9):2574–2576. doi: 10.1073/pnas.69.9.2574

Lac Operator Analogues: Bromodeoxyuridine Substitution in the lac Operator Affects the Rate of Dissociation of the lac Repressor

Syr-Yaung Lin 1, Arthur D Riggs 1
PMCID: PMC426991  PMID: 4560692

Abstract

As measured by a decreased rate of dissociation, lac repressor binds 10-times tighter to 5-bromodeoxyuridine-substituted lac operator than it does to normal lac operator. This result is obtained both in the absence and in the presence of isopropylthiogalactoside, an inducing ligand. These data are significant with regard to the mechanism of sequence-specific protein-DNA interaction, and also suggest a possible explanation for the effects of bromodeoxyuridine on the expression of differentiated functions in eukaryotic cells.

Keywords: protein-DNA interaction, nitrocellulose membrane filters, gene regulation

Full text

PDF
2574

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bischoff R., Holtzer H. Inhibition of myoblast fusion after one round of DNA synthesis in 5-bromodeoxyuridine. J Cell Biol. 1970 Jan;44(1):134–150. doi: 10.1083/jcb.44.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Gerber P. Activation of Epstein-Barr virus by 5-bromodeoxyuridine in "virus-free" human cells (complement-fixing antigen-immunofluorescence-leukocytes). Proc Natl Acad Sci U S A. 1972 Jan;69(1):83–85. doi: 10.1073/pnas.69.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hackett P., Jr, Hanawalt P. Selectivity for thymine over 5-bromouracil by a thymine-requiring bacterium. Biochim Biophys Acta. 1966 Aug 17;123(2):356–363. doi: 10.1016/0005-2787(66)90288-7. [DOI] [PubMed] [Google Scholar]
  4. Hampar B., Derge J. G., Martos L. M., Walker J. L. Synthesis of Epstein-Barr virus after activation of the viral genome in a "virus-negative" human lymphoblastoid cell (Raji) made resistant to 5-bromodeoxyuridine (thymidine kinase-virus antigen-immunofluorescence-herpesvirus fingerprints). Proc Natl Acad Sci U S A. 1972 Jan;69(1):78–82. doi: 10.1073/pnas.69.1.78. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Holthausen H. S., Chacko S., Davidson E. A., Holtzer H. Effect of 5-bromodeoxyuridine on expression of cultured chondrocytes grown in vitro. Proc Natl Acad Sci U S A. 1969 Jul;63(3):864–870. doi: 10.1073/pnas.63.3.864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jobe A., Riggs A. D., Bourgeois S. Lac repressor-operator interaction. V. Characterization of super- and pseudo-wild-type repressors. J Mol Biol. 1972 Feb 28;64(1):181–199. doi: 10.1016/0022-2836(72)90328-2. [DOI] [PubMed] [Google Scholar]
  7. Jones T. C., Dove W. F. Photosensitization of transcription by bromodeoxyuridine substitution. J Mol Biol. 1972 Mar 14;64(2):409–416. doi: 10.1016/0022-2836(72)90507-4. [DOI] [PubMed] [Google Scholar]
  8. Klement V., Nicolson M. O., Huebner R. J. Rescue of the genome of focus forming virus from rat non-productive lines by 5'-bromodeoxyruidine. Nat New Biol. 1971 Nov 3;234(44):12–14. doi: 10.1038/newbio234012a0. [DOI] [PubMed] [Google Scholar]
  9. Lin S. Y., Riggs A. D. Lac repressor binding to DNA not containing the lac operator and to synthetic poly dAT. Nature. 1970 Dec 19;228(5277):1184–1186. doi: 10.1038/2281184a0. [DOI] [PubMed] [Google Scholar]
  10. Lin S. Y., Riggs A. D. Lac repressor binding to operator analogues: comparison of poly(d(A-T)), poly(d(A-BrU)), and poly(d(A-U)). Biochem Biophys Res Commun. 1971 Dec 17;45(6):1542–1547. doi: 10.1016/0006-291x(71)90195-1. [DOI] [PubMed] [Google Scholar]
  11. Lowy D. R., Rowe W. P., Teich N., Hartley J. W. Murine leukemia virus: high-frequency activation in vitro by 5-iododeoxyuridine and 5-bromodeoxyuridine. Science. 1971 Oct 8;174(4005):155–156. doi: 10.1126/science.174.4005.155. [DOI] [PubMed] [Google Scholar]
  12. Marzullo G. Regulation of cartilage enzymes in cultured chondrocytes and the effect of 5-bromodeoxyuridine. Dev Biol. 1972 Jan;27(1):20–26. doi: 10.1016/0012-1606(72)90109-1. [DOI] [PubMed] [Google Scholar]
  13. Mayne R., Sanger J. W., Holtzer H. Inhibition of mucopolysaccharide synthesis by 5-bromodeoxyuridine in cultures of chick amnion cells. Dev Biol. 1971 Aug;25(4):547–567. doi: 10.1016/0012-1606(71)90005-4. [DOI] [PubMed] [Google Scholar]
  14. Riggs A. D., Bourgeois S., Cohn M. The lac repressor-operator interaction. 3. Kinetic studies. J Mol Biol. 1970 Nov 14;53(3):401–417. doi: 10.1016/0022-2836(70)90074-4. [DOI] [PubMed] [Google Scholar]
  15. Riggs A. D., Newby R. F., Bourgeois S. lac repressor--operator interaction. II. Effect of galactosides and other ligands. J Mol Biol. 1970 Jul 28;51(2):303–314. doi: 10.1016/0022-2836(70)90144-0. [DOI] [PubMed] [Google Scholar]
  16. Riggs A. D., Suzuki H., Bourgeois S. Lac repressor-operator interaction. I. Equilibrium studies. J Mol Biol. 1970 Feb 28;48(1):67–83. doi: 10.1016/0022-2836(70)90219-6. [DOI] [PubMed] [Google Scholar]
  17. Rowe W. P., Lowy D. R., Teich N., Hartley J. W. Some implications of the activation of murine leukemia virus by halogenated pyrimidines. Proc Natl Acad Sci U S A. 1972 Apr;69(4):1033–1035. doi: 10.1073/pnas.69.4.1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. STOCKDALE F., OKAZAKI K., NAMEROFF M., HOLTZER H. 5-BROMODEOXYURIDINE: EFFECT ON MYOGENESIS IN VITRO. Science. 1964 Oct 23;146(3643):533–535. doi: 10.1126/science.146.3643.533. [DOI] [PubMed] [Google Scholar]
  19. Silagi S., Bruce S. A. Suppression of malignancy and differentiation in melanotic melanoma cells. Proc Natl Acad Sci U S A. 1970 May;66(1):72–78. doi: 10.1073/pnas.66.1.72. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stellwagen R. H., Tomkins G. M. Differential effect of 5-bromodeoxyuridine on the concentrations of specific enzymes in hepatoma cells in culture. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1147–1150. doi: 10.1073/pnas.68.6.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Stellwagen R. H., Tomkins G. M. Preferential inhibition by 5-bromodeoxyuridine of the synthesis of tyrosine aminotransferase in hepatoma cell cultures. J Mol Biol. 1971 Feb 28;56(1):167–182. doi: 10.1016/0022-2836(71)90092-1. [DOI] [PubMed] [Google Scholar]
  22. Stewart S. E., Kasnic G., Jr, Draycott C., Ben T. Activation of viruses in human tumors by 5-iododeoxyuridine and dimethyl sulfoxide. Science. 1972 Jan 14;175(4018):198–199. doi: 10.1126/science.175.4018.198. [DOI] [PubMed] [Google Scholar]
  23. WESSELLS N. K. DNA SYNTHESIS, MITOSIS, AND DIFFERENTIATION IN PANCREATIC ACINAR CELLS IN VITRO. J Cell Biol. 1964 Mar;20:415–433. doi: 10.1083/jcb.20.3.415. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES