Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Sep;70(9):2637–2641. doi: 10.1073/pnas.70.9.2637

Addition of Histones to Histone-Depleted Nuclei: Effect on Template Activity Toward DNA and RNA Polymerases

Bert Silverman 1, Alfred E Mirsky 1
PMCID: PMC427072  PMID: 4582193

Abstract

The ability of histones to block the accessibility of DNA in chromatin to DNA and RNA polymerases was measured by addition of lysine-rich or arginine-rich histones to nuclei selectively depleted of these histones. By this procedure nuclei were obtained in which all of the original lysine-rich histone in the chromatin was replaced by arginine-rich histone. Conversely in other nuclei, additional lysine-rich histone replaced some of the endogenous arginine-rich histone. Lysine-rich histone was much more effective than arginine-rich histone in blocking accessibility to DNA polymerase. Both classes of histone inhibited template activity toward RNA polymerase to a similar extent.

In addition to lysine-rich histone and total arginine-rich histone, phosphorylated lysine-rich histone, two fragments of lysine-rich histone produced by cleavage with N-bromosuccinamide, and fractions IIB and IV of arginine-rich histone were added to histone-depleted nuclei. With both DNA and RNA polymerases as probes, no differences in inhibition of template activity were found when native lysine-rich histone was compared to phosphorylated lysine-rich histone. Similarly, fractions IIB and IV were indistinguishable from total arginine-rich histone. On a molar basis, the carboxyl fragment of lysine-rich histone was as effective as intact lysine-rich histone only when the amino fragment was added to it. By itself, the amino portion of lysine-rich histone was without inhibitory effect in the RNA polymerase assay and resulted in only slight inhibition of template activity toward DNA polymerase.

Keywords: chromatin, isolated thymus nuclei

Full text

PDF
2637

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler A. J., Langan T. A., Fasman G. D. Complexes of deoxyribonucleic acid with lysine-rich (f1) histone phosphorylated at two separate sites: circular dichroism studies. Arch Biochem Biophys. 1972 Dec;153(2):769–777. doi: 10.1016/0003-9861(72)90397-9. [DOI] [PubMed] [Google Scholar]
  2. Adler A. J., Schaffhausen B., Langan T. A., Fasman G. D. Altered conformational effects of phosphorylated lysine-rich histone (f-1) in f-1--deoxyribonucleic acid complexes. Circular dichroism and immunological studies. Biochemistry. 1971 Mar 2;10(5):909–913. doi: 10.1021/bi00781a028. [DOI] [PubMed] [Google Scholar]
  3. Bekhor I., Kung G. M., Bonner J. Sequence-specific interaction of DNA and chromosomal protein. J Mol Biol. 1969 Jan;39(2):351–364. doi: 10.1016/0022-2836(69)90322-2. [DOI] [PubMed] [Google Scholar]
  4. Bustin M., Cole R. D. Bisection of a lysine-rich histone by N-bromosuccinimide. J Biol Chem. 1969 Oct 10;244(19):5291–5294. [PubMed] [Google Scholar]
  5. Bustin M., Cole R. D. Species and organ specificity in very lysine-rich histones. J Biol Chem. 1968 Sep 10;243(17):4500–4505. [PubMed] [Google Scholar]
  6. Bustin M., Stollar B. D. Immunochemical specificity in lysine-rich histone subfractions. J Biol Chem. 1972 Sep 25;247(18):5716–5721. [PubMed] [Google Scholar]
  7. DALY M. M., MIRSKY A. E. Histones with high lysine content. J Gen Physiol. 1955 Jan 20;38(3):405–413. doi: 10.1085/jgp.38.3.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fasman G. D., Valenzuela M. S., Adler A. J. Complexes of deoxyribonucleic acid with fragments of lysine-rich histone (f-1). Circular dichroism studies. Biochemistry. 1971 Sep 28;10(20):3795–3801. doi: 10.1021/bi00796a024. [DOI] [PubMed] [Google Scholar]
  9. Hoare T. A., Johns E. W. The inhibition of RNA synthesis by histones. Biochim Biophys Acta. 1971 Oct;247(3):408–411. doi: 10.1016/0005-2787(71)90026-8. [DOI] [PubMed] [Google Scholar]
  10. Langan T. A. Histone phosphorylation: stimulation by adenosine 3',5'-monophosphate. Science. 1968 Nov 1;162(3853):579–580. doi: 10.1126/science.162.3853.579. [DOI] [PubMed] [Google Scholar]
  11. Littau V. C., Burdick C. J., Allfrey V. G., Mirsky S. A. The role of histones in the maintenance of chromatin structure. Proc Natl Acad Sci U S A. 1965 Oct;54(4):1204–1212. doi: 10.1073/pnas.54.4.1204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mirsky A. E., Burdick C. J., Davidson E. H., Littau V. C. The role of lysine-rich histone in the maintenance of chromatin structure in metaphase chromosomes. Proc Natl Acad Sci U S A. 1968 Oct;61(2):592–597. doi: 10.1073/pnas.61.2.592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mirsky A. E., Silverman B. Blocking by histones of accessibility to DNA in chromatin. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2115–2119. doi: 10.1073/pnas.69.8.2115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mirsky A. E., Silverman B. Effects of selective extraction of histones on template activities of chromatin by use of exogenous DNA and RNA polymerases. Proc Natl Acad Sci U S A. 1973 Jul;70(7):1973–1975. doi: 10.1073/pnas.70.7.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mirsky A. E., Silverman B., Panda N. C. Blocking by histones of accessibility to DNA in chromatin: addition of histones. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3243–3246. doi: 10.1073/pnas.69.11.3243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mirsky A. E. The structure of chromatin. Proc Natl Acad Sci U S A. 1971 Dec;68(12):2945–2948. doi: 10.1073/pnas.68.12.2945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rall S. C., Cole R. D. Amino acid sequence and sequence variability of the amino-terminal regions of lysine-rich histones. J Biol Chem. 1971 Dec 10;246(23):7175–7190. [PubMed] [Google Scholar]
  18. Rall S. C., Cole R. D. Quantitative cleavage of a protein with N-bromosuccinimide. J Am Chem Soc. 1970 Mar 25;92(6):1800–1801. doi: 10.1021/ja00709a086. [DOI] [PubMed] [Google Scholar]
  19. Silverman B., Mirsky A. E. Accessibility of DNA in chromatin to DNA polymerase and RNA polymerase. Proc Natl Acad Sci U S A. 1973 May;70(5):1326–1330. doi: 10.1073/pnas.70.5.1326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Spelsberg T. C., Hnilica L. S., Ansevin A. T. Proteins of chromatin in template restriction. 3. The macromolecules in specific restriction of the chromatin DNA. Biochim Biophys Acta. 1971 Jan 28;228(2):550–562. doi: 10.1016/0005-2787(71)90061-x. [DOI] [PubMed] [Google Scholar]
  21. Spelsberg T. C., Steggles A. W., Chytil F., O'Malley B. W. Progesterone-binding components of chick oviduct. V. Exchange of progesterone-binding capacity from target to nontarget tissue chromatins. J Biol Chem. 1972 Mar 10;247(5):1368–1374. [PubMed] [Google Scholar]
  22. Spelsberg T. C., Tankersley S., Hnilica L. S. The interaction of RNA polymerase with histones. Proc Natl Acad Sci U S A. 1969 Apr;62(4):1218–1225. doi: 10.1073/pnas.62.4.1218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stein G., Farber J. Role of nonhistone chromosomal proteins in the restriction of mitotic chromatin template activity. Proc Natl Acad Sci U S A. 1972 Oct;69(10):2918–2921. doi: 10.1073/pnas.69.10.2918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stollar B. D. Immunochemical measurement of DNA in nucleoprotein with the use of anti-DNA antibodies from patients with systemic lupus erythematosus. Biochim Biophys Acta. 1970;209(2):541–549. doi: 10.1016/0005-2787(70)90751-3. [DOI] [PubMed] [Google Scholar]
  25. Teng C. S., Hamilton T. H. Role of chromatin in estrogen action in the uterus. II. Hormone-induced synthesis of nonhistone acidic proteins which restore histone-inhibited DNA-dependent RNA synthesis. Proc Natl Acad Sci U S A. 1969 Jun;63(2):465–472. doi: 10.1073/pnas.63.2.465. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES