Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Oct;70(10):2757–2761. doi: 10.1073/pnas.70.10.2757

Autoregulation: A Role for a Biosynthetic Enzyme in the Control of Gene Expression

David H Calhoun 1,*, G Wesley Hatfield 1
PMCID: PMC427103  PMID: 4583023

Abstract

It was previously proposed, primarily on the basis of evidence in vitro, that L-threonine deaminase, the ilvA gene product, is required for repression of its own synthesis and for repression of the other genes in the ilv-ADE operon. In this communication, evidence in vivo is presented that supports this autoregulatory model. Further evidence is presented that suggests that L-threonine deaminase is also required for induction of the ilvC gene product. The autoregulatory model is presented in an expanded form to include recent evidence that L-threonine deaminase (EC 4.2.1.16) is a central element for repression of the ilvADE and ilvB operons, and for induction of the ilvC operon.

Keywords: isoleucine-valine, multivalent repression, enzyme induction, L-threonine deaminase

Full text

PDF
2757

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander R. R., Calvo J. M., Freundlich M. Mutants of Salmonella typhimurium with an altered leucyl-transfer ribonucleic acid synthetase. J Bacteriol. 1971 Apr;106(1):213–220. doi: 10.1128/jb.106.1.213-220.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arfin S. M., Ratzkin B., Umbarger H. E. The metabolism of valine and isoleucine in Escherichia coli. XVII. The role of induction in the derepression of acetohydroxy acid isomeroreductase. Biochem Biophys Res Commun. 1969 Dec 4;37(6):902–908. doi: 10.1016/0006-291x(69)90216-2. [DOI] [PubMed] [Google Scholar]
  3. Blatt J. M., Umbarger H. E. On the role of isoleucyl-tRNA synthetase in multivalent repression. Biochem Genet. 1972 Apr;6(2):99–118. doi: 10.1007/BF00486395. [DOI] [PubMed] [Google Scholar]
  4. Bollon A. P., Magee P. T. Involvement of threonine deaminase in repression of the isoleucine-valine and leucine pathways in Saccharomyces cerevisiae. J Bacteriol. 1973 Mar;113(3):1333–1344. doi: 10.1128/jb.113.3.1333-1344.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Calhoun D. H., Rimerman R. A., Hatfield G. W. Threonine deaminase from Escherichia coli. I. Purification and properties. J Biol Chem. 1973 May 25;248(10):3511–3516. [PubMed] [Google Scholar]
  6. Cline A. L., Bock R. M. Translational control of gene expression. Cold Spring Harb Symp Quant Biol. 1966;31:321–333. doi: 10.1101/sqb.1966.031.01.042. [DOI] [PubMed] [Google Scholar]
  7. FREUNDLICH M., BURNS R. O., UMBARGER H. E. Control of isoleucine, valine, and leucine biosynthesis. I. Multivalent repression. Proc Natl Acad Sci U S A. 1962 Oct 15;48:1804–1808. doi: 10.1073/pnas.48.10.1804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gruber M., Campagne R. N. Regulation of protein synthesis: an alternative to the repressor-operator hypothesis. Proc K Ned Akad Wet C. 1965;68(4):270–276. [PubMed] [Google Scholar]
  9. Guirard B. M., Ames B. N., Snell E. E. Salmonella typhimurium mutants with alternate requirements for vitamin B 6 or isoleucine. J Bacteriol. 1971 Oct;108(1):359–363. doi: 10.1128/jb.108.1.359-363.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hatfield G. W., Burns R. O. Ligand-induced maturation of threonine deaminase. Science. 1970 Jan 2;167(3914):75–76. doi: 10.1126/science.167.3914.75. [DOI] [PubMed] [Google Scholar]
  11. Hatfield G. W., Burns R. O. Specific binding of leucyl transfer RNA to an immature form of L-threonine deaminase: its implications in repression. Proc Natl Acad Sci U S A. 1970 Aug;66(4):1027–1035. doi: 10.1073/pnas.66.4.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hatfield G. W., Burns R. O. Threonine deaminase from Salmonella typhimurium. 3. The intermediate substructure. J Biol Chem. 1970 Feb 25;245(4):787–791. [PubMed] [Google Scholar]
  13. Iaccarino M., Berg P. Isoleucine auxotrophy as a consequence of a mutationally altered isoleucyl-transfer ribonucleic acid synthetase. J Bacteriol. 1971 Feb;105(2):527–537. doi: 10.1128/jb.105.2.527-537.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. JACOB F., MONOD J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961 Jun;3:318–356. doi: 10.1016/s0022-2836(61)80072-7. [DOI] [PubMed] [Google Scholar]
  15. Kovach J. S., Phang J. M., Blasi F., Barton R. W., Ballesteros-Olmo A., Goldberger R. F. Interaction between histidyl transfer ribonucleic acid and the first enzyme for histidine biosynthesis of Salmonella typhimurium. J Bacteriol. 1970 Nov;104(2):787–792. doi: 10.1128/jb.104.2.787-792.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kovach J. S., Phang J. M., Ference M., Goldberger R. F. Studies on repression of the histidine operon. II. The role of the first enzyme in control of the histidine system. Proc Natl Acad Sci U S A. 1969 Jun;63(2):481–488. doi: 10.1073/pnas.63.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Low B., Gates F., Goldstein T., Söll D. Isolation and partial characterization of temperature-sensitive Escherichia coli mutants with altered leucyl- and seryl-transfer ribonucleic acid synthetases. J Bacteriol. 1971 Nov;108(2):742–750. doi: 10.1128/jb.108.2.742-750.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Neidhardt F. C. Roles of amino acid activating enzymes in cellular physiology. Bacteriol Rev. 1966 Dec;30(4):701–719. doi: 10.1128/br.30.4.701-719.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. O'Neill J. P., Freundlich M. Two forms of biosynthetic acetohydroxy acid synthetase in Salmonella typhimurium. Biochem Biophys Res Commun. 1972 Jul 25;48(2):437–443. doi: 10.1016/s0006-291x(72)80070-6. [DOI] [PubMed] [Google Scholar]
  20. Pledger W. J., Umbarger H. E. Isoleucine and valine metabolism in Escherichia coli. XXII. A pleiotropic mutation affecting induction of isomeroreductase activity. J Bacteriol. 1973 Apr;114(1):195–207. doi: 10.1128/jb.114.1.195-207.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Szentirmai A., Szentirmai M., Umbarger H. E. Isoleucine and valine metabolism of Escherichia coli. XV. Biochemical properties of mutants resistant to thiaisoleucine. J Bacteriol. 1968 May;95(5):1672–1679. doi: 10.1128/jb.95.5.1672-1679.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wasmuth J., Umbarger H. E., Dempsey W. B. A role for a pyridoxne derivative in the multivalent repression of the isoleucine and valine biosynthetic enzymes. Biochem Biophys Res Commun. 1973 Mar 5;51(1):158–164. doi: 10.1016/0006-291x(73)90522-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES