Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Oct;70(10):2799–2803. doi: 10.1073/pnas.70.10.2799

Identification of 50S Proteins at the Peptidyl-tRNA Binding Site of Escherichia coli Ribosomes

Helen Oen 1,2, Maria Pellegrini 1,2, Dan Eilat 1,2,*, Charles R Cantor 1,2
PMCID: PMC427112  PMID: 4583025

Abstract

Bromoacetyl-phenylalanyl-tRNAphe bound to 70S E. coli ribosomes reacts covalently with proteins of the 50S subunit. The major reactions are with proteins L2 and L27. In the presence of poly(U), 70S-bound bromoacetyl-phenylalanyl-tRNAphe can participate in peptidebond formation with phenylalanyl-tRNAphe or puromycin. Most of the products of these reactions are also found covalently attached to L2 and L27. Chloramphenicol and sparsomycin markedly inhibit the peptide-bond formation. These results strongly suggest that bromoacetylphenylalanyl-tRNAphe can function as a normal peptidyl-tRNA and that the 50S proteins, L2 and L27, are located in the peptidyl-tRNA binding site. The side reactions of bromoacetyl-phenylalanyl-tRNAphe are with one or more 50S proteins from the set L14-17, L6 and/or L11, and L26. These occur to a much less extent than the reactions with L2 and L27. Any functional significance of the side reactions is unknown.

Keywords: protein L2 and L27, affinity labeling, protein synthesis, two-dimensional electrophoresis, antibiotics

Full text

PDF
2799

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chrambach A., Reisfeld R. A., Wyckoff M., Zaccari J. A procedure for rapid and sensitive staining of protein fractionated by polyacrylamide gel electrophoresis. Anal Biochem. 1967 Jul;20(1):150–154. doi: 10.1016/0003-2697(67)90272-2. [DOI] [PubMed] [Google Scholar]
  2. Crichton R. R., Wittmann H. G. Ribosomal proteins. XXIV. Trypsin digestion as a possible probe of the conformation of Escherichia coli ribosomes. Mol Gen Genet. 1972;114(2):95–105. doi: 10.1007/BF00332780. [DOI] [PubMed] [Google Scholar]
  3. Dzionara M., Kaltschmidt E., Wittmann H. G. Ribosomal proteins. 8. Molecular weights of isolated ribosomal proteins of Escherichia coli. Proc Natl Acad Sci U S A. 1970 Dec;67(4):1909–1913. doi: 10.1073/pnas.67.4.1909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fahnestock S., Erdmann V., Nomura M. Reconstitution of 50S ribosomal subunits from protein-free ribonucleic acid. Biochemistry. 1973 Jan 16;12(2):220–224. doi: 10.1021/bi00726a007. [DOI] [PubMed] [Google Scholar]
  5. Hindennach I., Kaltschmidt E., Wittmann H. G. Ribosomal proteins. Isolation of proteins from 50S ribosomal subunits of Escherichia coli. Eur J Biochem. 1971 Nov 11;23(1):12–16. doi: 10.1111/j.1432-1033.1971.tb01585.x. [DOI] [PubMed] [Google Scholar]
  6. Hsiung N., Cantor C. R. Reaction of celite-bound fluorescein isothiocyanate with the 50S E. coli ribosomal subunit. Arch Biochem Biophys. 1973 Jul;157(1):125–132. doi: 10.1016/0003-9861(73)90397-4. [DOI] [PubMed] [Google Scholar]
  7. Kaltschmidt E., Wittmann H. G. Ribosomal proteins. VII. Two-dimensional polyacrylamide gel electrophoresis for fingerprinting of ribosomal proteins. Anal Biochem. 1970 Aug;36(2):401–412. doi: 10.1016/0003-2697(70)90376-3. [DOI] [PubMed] [Google Scholar]
  8. Lanks K. W., Sciscenti J., Weinstein I. B., Cantor C. R. Studies on rat liver phenylalanyl transfer ribonucleic acid synthetase. I. Purification, stabilization, and complex formation. J Biol Chem. 1971 Jun 10;246(11):3494–3499. [PubMed] [Google Scholar]
  9. Moore P. B. Reaction of N-ethyl maleimide with the ribosomes of Escherichia coli. J Mol Biol. 1971 Aug 28;60(1):169–184. doi: 10.1016/0022-2836(71)90456-6. [DOI] [PubMed] [Google Scholar]
  10. Pellegrini M., Oen H., Cantor C. R. Covalent attachment of a peptidyl-transfer RNA analog to the 50S subunit of Escherichia coli ribosomes. Proc Natl Acad Sci U S A. 1972 Apr;69(4):837–841. doi: 10.1073/pnas.69.4.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sonenberg N., Wilchek M., Zamir A. Mapping of Escherichia coli ribosomal components involved in peptidyl transferase activity. Proc Natl Acad Sci U S A. 1973 May;70(5):1423–1426. doi: 10.1073/pnas.70.5.1423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Stöffler G., Daya L., Rak K. H., Garrett R. A. Ribosomal proteins. XXX. Specific protein binding sites on 23S RNA of Escherichia coli. Mol Gen Genet. 1972;114(2):125–133. doi: 10.1007/BF00332783. [DOI] [PubMed] [Google Scholar]
  13. Traub P., Nomura M. Structure and function of E. coli ribosomes. V. Reconstitution of functionally active 30S ribosomal particles from RNA and proteins. Proc Natl Acad Sci U S A. 1968 Mar;59(3):777–784. doi: 10.1073/pnas.59.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Traugh J. A., Traut R. R. Phosphorylation of ribosomal proteins of Escherichia coli by protein kinase from rabbit skeletal muscle. Biochemistry. 1972 Jun 20;11(13):2503–2509. doi: 10.1021/bi00763a019. [DOI] [PubMed] [Google Scholar]
  15. Traut R. R., Delius H., Ahmad-Zadeh C., Bickle T. A., Pearson P., Tissières A. Ribosomal proteins of E. Coli: stoichiometry and implications for ribosome structure. Cold Spring Harb Symp Quant Biol. 1969;34:25–38. doi: 10.1101/sqb.1969.034.01.007. [DOI] [PubMed] [Google Scholar]
  16. Weber H. J. Stoichiometric measurements of 30S and 50S ribosomal proteins from Escherichia coli. Mol Gen Genet. 1972;119(3):233–248. doi: 10.1007/BF00333861. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES