Abstract
A mol of creatine kinase (EC 2.7.3.2), an enzyme with two identical subunits can be titrated very rapidly and stoichiometrically with 2 mol of 2-chloromercuri-4-nitrophenol, an environmentally sensitive chromophoric probe specific for thiols. Chemical modification does not inactivate the enzyme nor can the reaction be prevented by a dead-end quaternary complex of enzyme, magnesium, ADP, and creatine with added nitrate. Creatine kinase modified with the chromophoric reagent can be further reacted with 200-fold molar excess of iodoacetamide, resulting in loss of enzymatic activity but without release of bound mercurinitrophenol. The tightly bound chromophore has spectral properties different from free unbound mercurinitrophenol. Only addition of MgADP, or MgATP and creatine, or nitrate, to the modified though active enzyme causes further changes in the visible spectrum of the bound nitrophenol. Addition of nitrate, Mg, ADP, and creatine to the enzyme with bound reporter group, in the order indicated, caused spectral changes; each addition gave a different spectrum.
Keywords: enzyme activity, reactive thiol, substrate binding, conformational change
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BENESCH R. E., LARDY H. A., BENESCH R. The sulfhydryl groups of crystalline proteins. I. Some albumins, enzymes, and hemoglobins. J Biol Chem. 1955 Oct;216(2):663–676. [PubMed] [Google Scholar]
- BURR M., KOSHLAND D. E., Jr USE OF "REPORTER GROUPS" IN STRUCTURE-FUNCTION STUDIES OF PROTEINS. Proc Natl Acad Sci U S A. 1964 Oct;52:1017–1024. doi: 10.1073/pnas.52.4.1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dawson D. M., Eppenberger H. M., Kaplan N. O. The comparative enzymology of creatine kinases. II. Physical and chemical properties. J Biol Chem. 1967 Jan 25;242(2):210–217. [PubMed] [Google Scholar]
- Eppenberger H. M., Dawson D. M., Kaplan N. O. The comparative enzymology of creatine kinases. I. Isolation and characterization from chicken and rabbit tissues. J Biol Chem. 1967 Jan 25;242(2):204–209. [PubMed] [Google Scholar]
- Evans D. R., McMurray C. H., Lipscomb W. N. The thiol group in the catalytic chains of aspartate transcarbamoylase. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3638–3642. doi: 10.1073/pnas.69.12.3638. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hammes G. G., Hurst J. K. Relaxation spectra of adenosine triphosphate-creatine phosphotransferase. Biochemistry. 1969 Mar;8(3):1083–1094. doi: 10.1021/bi00831a040. [DOI] [PubMed] [Google Scholar]
- KUBY S. A., MAHOWALD T. A., NOLTMANN E. A. Studies on adenosine triphosphate transphosphorylases. IV. Enzyme-substrate interactions. Biochemistry. 1962 Sep;1:748–762. doi: 10.1021/bi00911a004. [DOI] [PubMed] [Google Scholar]
- KUBY S. A., NODA L., LARDY H. A. Adenosinetriphosphate-creatine transphosphorylase. I. Isolation of the crystalline enzyme from rabbit muscle. J Biol Chem. 1954 Jul;209(1):191–201. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- MAHOWALD T. A., NOLTMANN E. A., KUBY S. A. Studies on adenosine triphosphate transphosphorylases. III. Inhibition reactions. J Biol Chem. 1962 May;237:1535–1548. [PubMed] [Google Scholar]
- McMurray C. H., Trentham D. R. A new class of chromophoric organomercurials and their reactions with D-glyceraldehyde 3-phosphate dehydrogenase. Biochem J. 1969 Dec;115(5):913–921. doi: 10.1042/bj1150913. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Milner-White E. J., Watts D. C. Inhibition of adenosine 5'-triphosphate-creatine phosphotransferase by substrate-anion complexes. Evidence for the transition-state organization of the catalytic site. Biochem J. 1971 May;122(5):727–740. doi: 10.1042/bj1220727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morrison J. F., James E. The mechanism of the reaction catalysed by adenosine triphosphate-creatine phosphotransferase. Biochem J. 1965 Oct;97(1):37–52. doi: 10.1042/bj0970037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NODA L., KUBY S. A., LARDY H. A. Adenosinetriphosphate-creatine transphosphorylase. II. Homogeneity and physicochemical properties. J Biol Chem. 1954 Jul;209(1):203–210. [PubMed] [Google Scholar]
- NODA L., NIHEI T., MORALES M. F. The enzymatic activity and inhibition of adenosine 5'-triphosphate-creatine transphosphorylase. J Biol Chem. 1960 Oct;235:2830–2834. [PubMed] [Google Scholar]
- Okabe K., Jacobs H. K., Kuby S. A. Studies on adenosine triphosphate transphosphorylases. X. Reactivity and anlysis of the sulfhydryl groups of the crystalline adenosine triphosphate-creatine transphosphorylase from calf brain. J Biol Chem. 1970 Dec 25;245(24):6498–6510. [PubMed] [Google Scholar]
- Reed G. H., Cohn M. Structural changes induced by substrates and anions at the active site of creatine kinase. Electron paramagnetic resonance and nuclear magnetic relaxation rate studies of the manganous complexes. J Biol Chem. 1972 May 25;247(10):3073–3081. [PubMed] [Google Scholar]
- WATTS D. C., RABIN B. R. A study of the 'reactive' sulphydryl groups of adenosine 5'-triphosphate-creatine phosphotransferase. Biochem J. 1962 Dec;85:507–516. doi: 10.1042/bj0850507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WATTS D. C., RABIN B. R., CROOK E. M. The reaction of iodoacetate and iodoacetamide with proteins as determined with a silver/silver iodide electrode. Biochim Biophys Acta. 1961 Apr 1;48:380–388. doi: 10.1016/0006-3002(61)90488-7. [DOI] [PubMed] [Google Scholar]
